Environmental heterogeneity, population dynamics and life-history differentiation in Primula farinosa

Detta är en avhandling från Stockholm : Department of Botany, Stockholm University

Sammanfattning: Allocation to reproduction is a key life-history trait. Optimal allocation to reproduction depends on environmental conditions because of their effects both on costs and benefits of reproduction and on patterns of growth, fecundity, and mortality. In this thesis, I studied 24 populations of the perennial herb Primula farinosa in the northern part of the Great Alvar on Öland, SE Sweden, and in an experimental garden at Stockholm University to investigate how plant allocation patterns and population dynamics vary along environmental gradients. In the first study, I performed experimental manipulations of reproduction to study costs of reproduction in relation to water availability. In the second study, I performed a demographic survey to investigate the effects of pre-dispersal seed predation on host-plant population dynamics in relation to environmental context. In the third study, I used a common garden experiment to investigate whether environmental variation among natural populations was correlated with genetic differentiation in reproductive effort, and in the fourth study, I performed reciprocal transplantations among four populations to investigate whether genetically based adaptive differentiation among local populations could be detected. The results showed that under natural conditions, plant reproductive costs, intensity of pre-dispersal seed predation, population growth rate and reproductive effort varied with water availability and vegetation height. Costs of reproduction were detected at high and low water availability but not under intermediate soil moisture conditions (paper I). Population dynamics of P. farinosa were affected by environmental conditions both directly, through effects on potential population growth rate (in the absence of seed predation) and indirectly, through effects on seed predation intensity and sensitivity to seed predation (paper II). Among-population genetic differentiation in reproductive allocation was documented in the common-garden experiment (paper III). However, reciprocal transplantations among populations separated by up to 6.2 km provided no evidence of local adaptation to current environmental conditions. Moreover, large differences in the performance of individuals transplanted to different study sites suggest that the study populations display considerable phenotypic plasticity (paper IV). Taken together, the results of these studies suggest that environmental variation has important direct and indirect effects on population dynamics and life history trade-offs in P. farinosa, and that differences in reproductive effort partly reflect genetic differentiation, but that phenotypic variation observed among natural populations does not reflect adaptations to current environmental conditions.  

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)