Transition delay in boundary-layer flows via reactive control

Sammanfattning: Transition delay in boundary-layer flows is achieved via reactive control of flow instabilities, i.e. Tollmien-Schlichting (TS) waves. Adaptive and model-based control techniques are investigated by means of direct numerical simulations (DNS) and experiments. The action of actuators localised in the wall region is prescribed based on localised measurement of the disturbance field; in particular, plasma actuators and surface hot-wire sensors are considered.Performances and limitations of this control approach are evaluated both for two-dimensional (2D) and three-dimensional (3D) disturbance scenarios. The focus is on the robustness properties of the investigated control techniques; it is highlighted that static model-based control, such as the linear-quadratic- Gaussian (LQG) regulator, is very sensitive to model-inaccuracies. The reason for this behaviour is found in the feed-forward nature of the adopted sensor/actuator scheme; hence, a second, downstream sensor is introduced and actively used to recover robustness via an adaptive filtered-x least-mean-squares (fxLMS) algorithm.Furthermore, the model of the flow required by the control algorithm is reduced to a time delay. This technique, called delayed-x least-mean-squares (dxLMS) algorithm, allows taking a step towards a self-tuning controller; by introducing a third sensor it is possible to compute on-line the suitable time-delay model with no previous knowledge of the controlled system. This self-tuning approach is successfully tested by in-flight experiments on a motor-glider.Lastly, the transition delay capabilities of the investigated control con- figuration are confirmed in a complex disturbance environment. The flow is perturbed with random localised disturbances inside the boundary layer and the laminar-to-turbulence transition is delayed via a multi-input-multi-output (MIMO) version of the fxLMS algorithm. A positive theoretical net-energy- saving is observed for disturbance amplitudes up to 2% of the free-stream velocity at the actuation location, reaching values around 1000 times the input power for the lower disturbance amplitudes that have been investigated.