Capillary electrophoresis mass spectrometry applied to structural proteomics and small molecule analysis

Sammanfattning: Capillary electrophoresis with mass spectrometric (CE–MS) detection offers a separation method without equal in terms of flexibility, utility, and cost efficiency. Here we demonstrate precisely this through the application of several laboratory-built CE–MS instruments for the separation of brain metabolites in non-primates, enantioselective separations of synthetic anesthetic metabolites in fractionated pony urine, application in structural proteomics workflows, and identification of exogenous alkaloid biotransformationproducts in human cerebrospinal fluid (CSF).We outline a method for quickly and affordably etching austenitic steel tubing, which is widely used in electrospray sources for CE–MS. The stainless steel tapered tip emitters provide robust electrospray with low sheath liquid flow rates and can be easily fabricated in-house, offering flexibility and cost-efficiency when commercial options areunavailable. We contribute a CE–MS method for enantiomer separation, specifically targeting 6-hydroxynorketamine (HNK). By introducing chiral selectors into the separation capillary, the method enables efficient enantiomer separation and offers a newtool to assist with research on HNK as a cure for depression.We explore the feasibility of cold CE–MS in hydrogen deuterium exchange workflows. The utilization of a lab-designed Peltier-cooled CE device achieves deuterium back exchange rates on par with commercial liquid chromatography-based platforms, offering new possibilities for studying protein structures and interactions.We also demonstrate the wide ranging versatility of CE–MS with contributions to the identification of specific tobacco related metabolites in CSF samples during the development of a high throughput mass spectrometry diagnostic tool for Parkinson’sDisease.This thesis showcases the versatility and value of CE–MS in various applications, a true blessing for analytical chemistry.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)