Bax and oxidized phospholipids - a deadly complex : Apoptotic protein-lipid assemblies studied by MAS NMR spectroscopy

Sammanfattning: Mitochondria are renowned for their vital role as cellular powerhouses because they provide ATP via cellular respiration. Additionally, these organelles also play an important role in other physiological processes, such as apoptosis. Apoptosis, or regulated cell death, is an important mechanism that regulates, for example, tissue homeostasis and embryonic development. Malfunctioning apoptosis can cause severe diseases such as various types of cancer and neurodegenerative diseases. The significance of mitochondria for apoptosis is that mitochondria host a variety of apoptogenic factors, such as cytochrome c. The release of these factors after the formation of an apoptotic pore can be regarded as a point of no return in the onset of apoptosis as these factors trigger the activation of caspases and consequently nuclear fragmentation.The mitochondrial outer membrane (MOM) is essential for deciding the cell’s fate, since the MOM provides an interaction surface for the pro- and anti-apoptotic proteins of the Bcl-2 protein family. Further, oxidized phospholipids (OxPls) within the MOM that are generated under oxidative stress conditions (a potent pro-apoptotic stimulus) can directly affect the equilibrium between pro- and anti-apoptotic proteins at the MOM surface, hence influencing the formation of apoptotic pores.To characterize the impact of different OxPls on membrane dynamics and organization, several MOM-mimicking systems were studied by solid-state magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). These main experiments were accompanied by fluorescence spectroscopy and differential scanning calorimetry (DSC) studies to investigate the impact of OxPls and their interactions with the pro-apoptotic Bax protein at both the macroscopic and molecular levels. By combining several orthogonal methods, we were able to obtain a detailed description of the changes in MOM-mimicking vesicles induced by several types of OxPls. Moreover, we demonstrated how these changes impact the interaction between liposomes and the pro-apoptotic Bax protein.By using DSC, we were able to determine not only the macroscopic effect of two OxPls – PazePC and PoxnoPC – but also a concentration threshold. Both OxPls disrupted the membrane order such that the melting behavior of the MOM-mimicking vesicles became less cooperative. A decrease in cooperativity was detectable for OxPl concentrations of up to 5 mol%, after which the cooperativity remained constant. The addition of Bax resulted in an observable ordering effect, as some of the membrane disorder was negated by Bax and the melting process became more cooperative again. The ordering effect of Bax was subsequently confirmed by 31P MAS NMR experiments and cross polarization (CP) buildup curves. Analysis of the buildup curves revealed that at the molecular level, Bax enabled more efficient CP transfer, which indicated rigidification of the membranes after Bax insertion. Furthermore, the 31P NMR experiments provided the first molecular evidence of the importance of cardiolipin as a membrane contact site for Bax.Despite having similar disordering effects when studied with DSC, PoxnoPC and PazePC exhibited opposing effects on the pore formation ability of Bax. In studies with fluorescent dye-based leakage assays, Bax was able to form long-lived, stable pores in PazePC-containing giant unilamellar vesicles (GUVs). However, the observed leakage mechanism in PoxnoPC-containing GUVs could no longer be explained by an all-or-none leakage mechanism due to the brevity of the formed pores, leading to partially leaked vesicles, indicating a graded leakage mechanism instead.To investigate the possible reasons for the different leakage activities and to obtain mechanistic insights, we conducted 13C MAS NMR experiments. These experiments enabled us to pinpoint specific carbon sites in the different MOM-mimicking systems and to study their dynamic profile as a function of temperature. Though the OxPl-containing multilamellar vesicles (MLVs), compared with non-oxidized systems, also showed drastic dynamic changes, the molecular differences between PazePC- and PoxnoPC-containing vesicles were not significant enough to constitute a structural reason for the opposing leakage activities.In addition to investigating membrane dynamics, we were able to establish a novel strategy for producing cytotoxic Bax protein. This novel expression and purification strategy increased the obtained yields by an order of magnitude. By deploying a double fusion approach, we were able to inhibit both termini of the protein from exhibiting their disruptive, yield-diminishing interactions with the host cell membranes.In conclusion, over the course of this thesis we were able to develop fast, yet powerful tools to investigate the dynamic changes of MOM-mimicking vesicles under the influence of OxPls and pro-apoptotic Bax. In the future, these tools could be used to characterize the underlying protein-lipid interactions that are responsible for the opposing leakage activities. Due to the development of a novel Bax production strategy, future research could shift to protein-focused studies with the primary goal of determining the structure of the apoptotic Bax pore.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)