QSBMR Quantitative Structure Biomagnification Relationships : Studies Regarding Persistent Environmental Pollutants in the Baltic Sea Biota

Sammanfattning: I have studied persistent environmental pollutants in herring (Clupea harengus), in adult guillemot (Uria aalge) and in guillemot eggs from the Baltic Sea. The studied contaminants were organochlorines (OCs); dichlorodiphenyltrichloroethanes (DDTs), polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and brominated flame retardants (BFRs); polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD). The highest concentration in both species was shown by p,p′DDE with a concentration in guillemot egg (geometric mean (GM) with 95% confidence interval) of 18200 (17000 – 19600) ng/g lipid weight. The BFR with the highest concentration in guillemot egg was HBCD with a GM concentration of 140 (120 – 160) ng/g lw. To extract additional and essential information from the data, not possible to obtain using only univariate or bivariate statistics, I used multivariate data analysis techniques; principal components analysis (PCA), partial least squares regression (PLS), soft independent modelling of class analogy (SIMCA), and PLS discriminant analysis (PLS-DA). I found e.g.; that there are significant negative correlations between egg weight and the concentrations of HCB and p,p'DDE; that concentrations of OCs and BFRs in the organisms co-varied so that concentrations of OCs can be used to calculate concentrations of BFRs; and, that several contaminants (e.g. HBCD) had higher concentration in guillemot egg than in guillemot muscle, that several (e.g. BDE47) showed no concentration difference between muscle and egg and that one contaminant (BDE154) showed higher concentration in the guillemot muscles than in egg. In this thesis I developed a new method, “randomly sampled ratios” (RSR), to calculate biomagnification factors (BMFs) i.e. the ratio between the concentration of a contaminant in an organism and the concentration of the same contaminant in its food. With this new method BMFs are denoted with an estimate of variation. Contaminants that biomagnify are e.g., p,p′DDE, CB118, HCB, βHCH and all of the BFRs. Those that do not biomagnify are e.g., p,p′DDT, αHCH and CB101. Lastly, to investigate which of the contaminants descriptors (physical-chemical/other properties and characteristics) that correlates to the biomagnification of the contaminants, I modeled the contaminants’ respective BMFRSR versus ~100 descriptors and showed that ~20 descriptors in combination were important, either favoring or counteracting biomagnification between herring and guillemot.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)