Chemical Synthesis of Affibody Molecules for Protein Detection and Molecular Imaging

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Proteins are essential components in most processes in living organisms. The detection and quantification of specific proteins can be used e.g. as measures of certain physiological conditions, and are therefore of great importance. This thesis focuses on development of affinity-based bioassays for specific protein detection. The use of Affibody molecules for specific molecular recognition has been central in all studies in this thesis. Affibody molecules are affinity proteins developed by combinatorial protein engineering of the 58-residue protein A-derived Z domain scaffold. In the first paper, solid phase peptide synthesis is investigated as a method to generate functional Affibody molecules. Based on the results from this paper, chemical synthesis has been used throughout the following papers to produce Affibody molecules tailored with functional groups for protein detection applications in vitro and in vivo. In paper I, an orthogonal protection scheme was developed to enable site-specific chemical introduction of three different functional probes into synthetic Affibody molecules. Two of the probes were fluorophores that were used in a FRET-based binding assay to detect unlabeled target proteins. The third probe was biotin, which was used as an affinity handle for immobilization onto a solid support. In paper II, a panel of Affibody molecules carrying different affinity handles were synthesized and evaluated as capture ligands on microarrays. Paper III describes the synthesis of an Affibody molecule that binds to the human epidermal growth factor receptor type 2, (HER2), and the site-specific incorporation of a mercaptoacetyl-glycylglycylglycine (MAG3) chelating site in the peptide sequence to allow for radiolabeling with 99mTc. The derivatized Affibody molecule was found to retain its binding capacity, and the 99mTc-labeling was efficient and resulted in a stable chelate formation. 99mTc-labeled Affibody molecules were evaluated as in vivo HER2-targeting imaging agents in mice. In the following studies, reported in papers IV-VI, the 99mTc-chelating sequence was engineered in order to optimize the pharmacokinetic properties of the radiolabeled Affibody molecules and allow for high-contrast imaging of HER2-expressing tumors and metastatic lesions. The main conclusion from these investigations is that the biodistribution of Affibody molecules can be dramatically modified by amino acid substitutions directed to residues in the MAG3-chelator. Finally, paper VII is a report on the chemical synthesis and chemoselective ligation to generate a cross-linked HER2-binding Affibody molecule with improved thermal stability and tumor targeting capacity. Taken together, the studies presented in this thesis illustrate how peptide synthesis can be used for production and modification of small affinity proteins, such as Affibody molecules for protein detection applications.