Theoretical Investigations of Compressed Materials

Sammanfattning: The use of high pressure as a tool to design new materials as well as to investigatematerials properties has become increasingly important during last one decade. The maingoal of the present thesis is to enhance the significance of the high pressure method as aquantitative tool in solid state investigations. Virtually all of the properties of solids aredirectly determined by their electronic structure. Similarly, the changes in the propertiesof solids under pressure are determined by the changes in the electronic structure underpressure. We have attempted to provide a comprehensive description of the resulting theoryin a electronic structure and the properties of condensed matter. The theoretical basis for these investigations is the density functional theory, in combinationwith ab initio method. The study of pressure induced phase transitions for thecompounds of CaF2, Cr2GeC, Ti3SiC2, as well as V at 0 K are presented. The latticeparameters, the phase transition pressures, the equation of states, the electronic structureshave been calculated and shown a good agreement with experimental results. A lattices dynamic study of the body center cubic (bcc) Fe under high pressure andhigh temperature is presented. The bcc iron could dynamical stabilize in the Earth innercore conditions. The unusual phase transition of bcc V under high pressure is investigatedand it is shown that the driving mechanism is electron-phonon interaction. Finally, a method based on the LDA+U approach has been applied to study spin statetransition in FeCO3. Our results show that magnetic entropy play a significant role in spinstate transition.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)