Effect of climate and land use on niche utilization and distribution of nettle-feeding  butterflies

Detta är en avhandling från Stockholm : Department of Zoology, Stockholm University

Sammanfattning: Anthropogenic changes in climate and land use are causing a dramatic erosion of biodiversity. To understand this erosion, and predict future transformations of biodiversity, we need to understand better species’ response to these changes at different spatial and temporal scales. Modeling studies have identified correlations between physical parameters of the environment and species’ distribution at large spatial scales. However, this does not accurately characterize the response of a specific species, since this does not account for the constraints arising from the biology of the species. This thesis shall combine knowledge on the biology of species obtained from laboratory experiments with modeling studies. This will allow us (i) to identify life history traits and biotic interactions that influence species’ adaptive potential, and hence, explain possible differences in species’ distribution, and (ii) to consider, not only the ecological but also the evolutionary aspects of species’ response to changes. This integrative approach is likely to improve our predictions on species’ population dynamic in a changing environment.I focus on a community of butterflies in Sweden (Vanessa cardui, Polygonia c-album, Aglais urticae, Aglais io, Araschnia levana) that feeds on the stinging nettle (Urtica dioica). The available knowledge on the biology of these species and their short life cycles, which allow investigations of their response to changes on a short-time scale, make them a good system to study. Among three of these species, I showed great differences in organisms’ response to variation in food nutrient content. This is a potentially important finding considering the increased use of chemical fertilizers. These differences are to a large extent explained by differences among species in their degree of host plant specialization and voltinism (paper II). Thus, life history traits determine the response of species to environmental changes, but are themselves likely to evolve in response to such changes. Climate change, for instance, may alter the phenological synchrony between plant-feeding insects and their host plants, making it necessary for the insects to evolve their host plant range in order to ensure the availability of resources during larval development (paper I & III). The biology of a species, including biotic interactions, helps to explain the observed shift in a species’ distribution and environmental niche that result from climate change. I have shown that the recent establishment of A. levana in southern Sweden has modified the niche of the resident species, A. urticae and A. io (Paper IV). Niche partitioning in this community is likely mediated by parasite-driven apparent competition.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)