End-to-End Quality of Service Guarantees for Wireless Sensor Networks

Detta är en avhandling från Östersund : Mid Sweden University

Sammanfattning: Wireless sensor networks have been a key driver of innovation and societal progressover the last three decades. They allow for simplicity because they eliminate ca-bling complexity while increasing the flexibility of extending or adjusting networksto changing demands. Wireless sensor networks are a powerful means of fillingthe technological gap for ever-larger industrial sites of growing interconnection andbroader integration. Nonetheless, the management of wireless networks is difficultin situations wherein communication requires application-specific, network-widequality of service guarantees. A minimum end-to-end reliability for packet arrivalclose to 100% in combination with latency bounds in the millisecond range must befulfilled in many mission-critical applications.The problem addressed in this thesis is the demand for algorithmic support forend-to-end quality of service guarantees in mission-critical wireless sensor networks.Wireless sensors have traditionally been used to collect non-critical periodic read-ings; however, the intriguing advantages of wireless technologies in terms of theirflexibility and cost effectiveness justify the exploration of their potential for controland mission-critical applications, subject to the requirements of ultra-reliable com-munication, in harsh and dynamically changing environments such as manufactur-ing factories, oil rigs, and power plants.This thesis provides three main contributions in the scope of wireless sensor net-works. First, it presents a scalable algorithm that guarantees end-to-end reliabilitythrough scheduling. Second, it presents a cross-layer optimization/configurationframework that can be customized to meet multiple end-to-end quality of servicecriteria simultaneously. Third, it proposes an extension of the framework used toenable service differentiation and priority handling. Adaptive, scalable, and fast al-gorithms are proposed. The cross-layer framework is based on a genetic algorithmthat assesses the quality of service of the network as a whole and integrates the phys-ical layer, medium access control layer, network layer, and transport layer.Algorithm performance and scalability are verified through numerous simula-tions on hundreds of convergecast topologies by comparing the proposed algorithmswith other recently proposed algorithms for ensuring reliable packet delivery. Theresults show that the proposed SchedEx scheduling algorithm is both significantlymore scalable and better performing than are the competing slot-based schedulingalgorithms. The integrated solving of routing and scheduling using a genetic al-vvigorithm further improves on the original results by more than 30% in terms of la-tency. The proposed framework provides live graphical feedback about potentialbottlenecks and may be used for analysis and debugging as well as the planning ofgreen-field networks.SchedEx is found to be an adaptive, scalable, and fast algorithm that is capa-ble of ensuring the end-to-end reliability of packet arrival throughout the network.SchedEx-GA successfully identifies network configurations, thus integrating the rout-ing and scheduling decisions for networks with diverse traffic priority levels. Fur-ther, directions for future research are presented, including the extension of simula-tions to experimental work and the consideration of alternative network topologies.