Sökning: "geometri och analys Algebra och geometri"

Visar resultat 1 - 5 av 75 avhandlingar innehållade orden geometri och analys Algebra och geometri.

  1. 1. Real and complex Monge-Ampère equations, statistical mechanics and canonical metrics

    Detta är en avhandling från Göteborg : Chalmers tekniska högskola

    Författare :Jakob Hultgren; Göteborgs universitet.; Gothenburg University.; [2018]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; Statistical Mechanics; Point Processes; Hessian manifolds; Kähler geometry; Optimal Transport; Canonical metrics; Complex Monge-Ampère equations; Real Monge-Ampère equations; Kähler-Einstein metrics;

    Sammanfattning : Recent decades has seen a strong trend in complex geometry to study canonical metrics and the way they relate to geometric analysis, algebraic geometry and probability theory. This thesis consists of four papers each contributing to this field. The first paper sets up a probabilistic framework for real Monge-Ampère equations on tori. LÄS MER

  2. 2. Admissible transformations and the group classification of Schrödinger equations

    Detta är en avhandling från Linköping : Linköping University Electronic Press

    Författare :Celestin Kurujyibwami; Linköpings universitet.; Linköpings universitet.; [2017]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES;

    Sammanfattning : We study admissible transformations and solve group classification problems for various classes of linear and nonlinear Schrödinger equations with an arbitrary number n of space variables.The aim of the thesis is twofold. LÄS MER

  3. 3. Vector-valued Eisenstein series of congruence types and their products

    Detta är en avhandling från ; Chalmers tekniska högskola; Gothenburg

    Författare :Jiacheng Xia; [2019]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; Hecke operator; Fourier expansion of modular forms; congruence type; products of Eisenstein series; vector-valued modular forms;

    Sammanfattning : Historically, Kohnen and Zagier connected modular forms with period polynomials, and as a consequence of this association concluded that the products of at most two Eisenstein series span all spaces of classical modular forms of level 1. Later Borisov and Gunnells among other authors extended the result to higher levels. LÄS MER

  4. 4. Contributions to Pointfree Topology and Apartness Spaces

    Detta är en avhandling från Uppsala : Department of Mathematics

    Författare :Anton Hedin; Uppsala universitet.; [2011]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; Constructive mathematics; General topology; Pointfree topology; Domain theory; Interval analysis; Apartness spaces; MATHEMATICS Algebra; geometry and mathematical analysis Mathematical logic; MATEMATIK Algebra; geometri och analys Matematisk logik; Mathematical Logic; Matematisk logik;

    Sammanfattning : The work in this thesis contains some contributions to constructive point-free topology and the theory of apartness spaces. The first two papers deal with constructive domain theory using formal topology. LÄS MER

  5. 5. A Natural Interpretation of Classical Proofs

    Detta är en avhandling från Stockholm : Matematiska institutionen

    Författare :Jens Brage; Stockholms universitet.; [2006]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; Brouwer-Heyting-Kolmogorov; classical logic; constructive type theory; constructive semantics; proof interpretation; double-negation; continuation-passing-style; natural deduction; sequent calculus; cut elimination; explicit substitution; MATHEMATICS Algebra; geometry and mathematical analysis Mathematical logic; MATEMATIK Algebra; geometri och analys Matematisk logik;

    Sammanfattning : In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK.We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. LÄS MER