Augmented reality smart glasses as assembly operator support : A framework for enabling industrial integration

Sammanfattning: Manufacturing industry is seeing vast improvements in productivity and flexibility as the fourth industrial revolution continues to unfold. However, despite improved computation and automation capacity, there is still a role for operators to play in Industry 4.0, mirrored in the concept of Operator 4.0. Improved productivity and a more competitive global market have contributed to increasing manufacturing complexity, putting greater cognitive demands on operators. A technology that can support operators in this new manufacturing landscape is augmented reality (AR), specifically, headworn AR smart glasses (ARSG). With ARSG, operators can receive information interactively in real time, hands free and overlying their natural environment. ARSG are an emerging technology that is becoming more mature; there are early examples of their use in manufacturing industry, but ARSG are not yet widespread.Because ARSG are an emerging technology, there is still uncertainty as to how ARSG can be integrated, like other production equipment, in assembly lines. When current literature was analyzed, it was found that there is a need for more knowledge particularly from the manufacturing engineering perspective of practically integrating ARSG on the industrial shop floor in the long term. This thesis therefore aims to create a framework that supports industry in making strategic and practical decisions about integrating ARSG in production as an assembly operator support tool. The framework is designed to guide industrial decision makers in evaluating the suitability of ARSG as support in an assembly station and, further to offer specific recommendations and rationales for actions to take. It has two main perspectives: the operators using the ARSG and the manufacturing engineers conducting the integration into the production systems. The framework was iteratively developed, using design science combining qualitative and quantitative methods into mixed methods. Three research questions were developed and answered as steps toward creating and evaluating the framework.The results of the thesis show that ARSG integration should be considered in relation to the investment cost and efficiency gains. For instance, ARSG requires the digitalization of assembly instructions before it can be feasible. If operators are mostly stationary when working and have little need for spatial guidance, there might be cheaper alternatives to ARSG, such as monitors or pick-by-light, that merit prior consideration. The framework has been developed and tested iteratively with industrial experts from different fields, with the initial strawman design based on three literature reviews and previous research.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)