A study of the fatigue behaviour of laser and hybrid laser welds

Sammanfattning: This licentiate thesis focuses on the fatigue cracking behaviour of laser and hybrid laser-MAG welded structures. Beside the welding process and the resulting weld, several topics related to fatigue of welded structures are treated such as; macro and micro surface geometry, weld defects and their influence on fatigue performance of welded structures, fatigue analysis by the nominal and effective notch stress method, fatigue life prediction using LEFM (Linear Elastic Fracture Mechanics), fatigue testing, metallurgical analysis, elastic and elastic-plastic finite element analysis. The main objective is to gain understanding of the impact of weld defects and weld shape details on the fatigue behaviour of laser and hybrid laser welded joints. The first paper is a literature survey which compiled useful information regarding fracture and fatigue analysis of various welded joints. In the second paper fatigue testing by bending of laser hybrid welded eccentric fillet joints was carried out. The weld surface geometry was measured and studied in order to understand the crack initiation mechanisms. The crack initiation location and the crack propagation path were studied and compared to Finite Element stress analysis, taking into account the surface macro- and micro-geometry. Based on the nominal stress approach, SN-curves were designed for laser hybrid welded eccentric fillet joints. The competing criteria of throat depth and stress raising by the weld toe radii and by the surface ripples are explained, showing that surface ripples can be critical.The third paper is the continuation of the second paper, but studying the fatigue crack propagation of laser hybrid welded eccentric fillet joints. Microscopic analysis was carried out to identify internal weld defects. Nominal and effective notch stress analysis was carried out to compare standardized values. LEFM analysis was conducted for this joint geometry for four point bending load in order to study the effect of LOF on fatigue life. In good agreement between simulation and metallurgy, cracking starts and propagates from the lower toe, but for certain geometries alternatively from the weld bead or upper toe, even in case of Lack of Fusion, as was well be explained. Improved understanding of the crack propagation for these geometrical conditions was obtained and in turn illustrated. Lack of fusion surprisingly was not critical and only slightly lowered the fatigue life. Two dimensional linear elastic finite element analyses is carried out in the fourth paper on laser welding of a beamer in order to study the impact of geometrical aspects of the joint design and of the weld root on the fatigue performance. Critical geometrical aspects were classified and then studied by FE-analysis with respect to their impact on the fatigue behaviour. Stress comparison of full 15 mm and partial 6 mm weld penetration of the beam was done by varying the toe and root geometry to identify the critical details. Generalization of the knowledge by new methods was an important aspect, particularly to apply the findings for other joints. Together the papers provide better understanding of fatigue behaviour for complex geometries and are therefore suitable guidelines for improved weld design.