Computer-aided detection and novel mammography imaging techniques

Sammanfattning: This thesis presents techniques constructed to aid the radiologists in detecting breast cancer, the second largest cause of cancer deaths for western women. In the first part of the thesis, a computer-aided detection (CAD) system constructed for the detection of stellate lesions is presented. Different segmentation methods and an attempt to incorporate contra-lateral information are evaluated. In the second part, a new method for evaluating such CAD systems is presented based on constructing credible regions for the number of false positive marks per image at a certain desired target sensitivity. This method shows that the resulting regions are rather wide and this explains some of the difficulties encountered by other researchers when trying to compare CAD algorithms on different data sets. In this part an attempt to model the clinical use of CAD as a second look is also made and it shows that applying CAD in sequence to the radiologist in a routine manner, without duly altering the decision criterion of the radiologist, might very well result in suboptimal operating points. Finally, in the third part two dual-energy imaging methods optimized for contrast-enhanced imaging of breast tumors are presented. The first is based on applying an electronic threshold to a photon-counting digital detector to discriminate between high- and low-energy photons. This allows simultaneous acquisition of the high- and low-energy images. The second method is based on the geometry of a scanned multi-slit system and also allows single-shot contrast-enhanced dual-energy mammography by filtering the x-ray beam that reaches different detector lines differently.