Phenomenology of Charged Higgs Bosons and B-meson Decays

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: For more than 30 years the Standard Model has been the theoretical foundation for particle physics. The theory has been verified successfully by experimental tests. Its biggest shortcoming is the non-discovery of the Higgs boson,responsible for giving the other particles masses. Despite its success there are hints that the Standard Model is not the complete theory and many extensions of it, such as supersymmetry, have been proposed.Extended theories often predict the existence of a charged Higgs boson and its detection will be a clear sign of physics beyond the Standard Model. The main focus in this thesis is on various phenomenological aspects of the charged Higgs boson. For favorable mass and couplings direct detection is shown to be possible at the Large Hadron Collider in production with an associated W boson. It is also shown how a light charged Higgs can have measurable effects on spin correlations in decays of pair-produced top quarks. The charged Higgs boson can also be seen indirectly, in for example B-meson decays, which can be used to put constraints on its mass and fermion couplings. Exclusion limits in two supersymmetric models are given together with a comparison with the discovery potentials for the LHC experiments. A tool for calculating properties, such as masses and decays, of both charged and neutral Higgs bosons in the Two-Higgs-Doublet Model is also presented.B-meson decays can also be used to test aspects of the strong interaction. Part of this thesis deals with improving and applying phenomenological models to B-meson decays. Although these models are not derived from first principles, their success shows that they capture important features of non-perturbative strong interactions.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)