Multimodal Imaging of Anisotropic Hierarchical Materials

Sammanfattning: The thesis is focused on studying the nanostructure of natural and synthetic hierarchical materials with biological applications, using X-ray scattering imaging and birefringence microscopy. The term "hierarchical materials" is used for structures composed of sub-units organised in different length scales that create the building blocks for the next level. Hierarchical materials are commonly found in nature, with diverse structures and functionalities. In the first part of this thesis, the nanostructure of mineralised tissue, such as tusk and bone, was the focus. Scanning SAXS, SAXS tensor tomography and birefringence microscopy were used to study the helicoidal structure of narwhal tusk. A high degree of anisotropy was found, in which the dentine and cementum have a very highly organised nanostructure with a preferential orientation along the tusk. However, those two main components differ in the deviations from that primary orientation, which revealed a complex helical pattern that could be the source of its anisotropic mechanical properties. A layered structure was also observed using X-ray fluorescence spectroscopy, indicating tusk growth layers that reflect the animal history. Those methods were also applied to study the anisotropic nanostructure of regenerated bone in biodegradable scaffolds and titanium implants in vivo, successfully demonstrating that the scaffold or implant architecture influence the new bone formation. Scaffolds with aligned fibres led to well-structured bone and a faster regeneration process, while scaffolds with randomly oriented fibres only created a callus around the damaged area with poor growth of new tissue. In the second part of this thesis, the anisotropy of self-assembled lyotropic liquid crystals for 3D printing of bone-mimetic composites was studied. This work aimed to understand the fundamental processes and mechanisms that induce the alignment of the self-assembled crystalline units to create composites with more anisotropic mechanical properties. In that study, an in situ characterisation of the nanostructure during flow in the 3D printer was done using scanning SAXS and birefringence microscopy to correlate the manufacturing process with the observed structural alignment of the material. The results demonstrated the role of the shear stress in such liquid crystals, highlighting the effect it has on the anisotropy and morphological transitions in the self-assembled structures. The importance of time and environmental conditions during 3D printing is also shown, which may affect the final structure and orientation.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)