On string integrability A journey through the two-dimensional hidden symmetries in the AdS/CFT dualities

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: One of the main topics in the modern String Theory are the conjectured string/gauge (AdS/CFT) dualities. Proving such conjectures is extremely difficult since the gauge and string theory perturbative regimes do not overlap. In this perspective, the discovery of infinitely many conserved charges, i.e. the integrability, in the planar AdS/CFT has allowed us to reach immense progresses in understanding and confirming the duality.The first part of this thesis is focused on the gravity side of the AdS5/CFT4 duality: we investigate the quantum integrability of the type IIB superstring on AdS5 x S5. In the pure spinor formulation we analyze the operator algebra by computing the operator product expansion of the Maurer-Cartan currents at the leading order in perturbation theory. With the same approach at one loop order, we show the path-independence of the monodromy matrix which implies the charge conservation law, strongly supporting the quantum integrability of the string sigma-model. We also verify that the Lax pair field strength remains well-defined at one-loop order being free from UV divergences. The same string sigma-model is analyzed in the Green-Schwarz formalism in the near-flat-space (NFS) limit. Such a limit remarkably simplifies the string world-sheet action but still leaving interesting physics. We use the NFS truncation to show the factorization of the world-sheet S-matrix at one-loop order. This property defines a two-dimensional field theory as integrable: it is the manifestation of the higher conserved charges. Hence, we have explicitly checked their presence at quantum level. The second part is dedicated to the AdS4/CFT3 duality: in particular the type IIA superstring on AdS4 x CP3. We compute the leading quantum corrections to the string energies for string configurations with a large but yet finite angular momentum on CP3 and show that they match the conjectured all-loop Bethe Ansatz equations.