Individualizing assembly processes for geometric quality improvement

Sammanfattning: Dimensional deviations are a consequence of the mass production of parts. These deviations can be controlled by tightening production tolerances. However, this solution is not always desired because it usually increases production costs. The availability of massive amounts of data about products and automatized production has opened new opportunities to improve products' geometrical quality by individualizing the assembly process. This individualization can be conducted through several techniques, including selective assembly, locator adjustments, weld sequence optimization, and clamping sequence optimization in a smart assembly line for spot-welded sheet metal assemblies. This study focuses on two techniques of individualizing the assembly process, selective assembly, and individualized locator adjustments in assembly fixtures. The existing studies and applications of these methods are reviewed, and the research gaps are defined. The previous applications of selective assembly are limited to linear and rigid assemblies. This study develops the application of selective assembly for sheet metal assemblies. This research addresses another research gap regarding the selective assembly of sheet metals by reducing the calculation cost associated with this technique. This study also develops a new locator adjustment method. This method utilizes scanned geometries of mating parts to predict the required adjustments. Afterward, a method for individualized adjustments is also developed. Considering applied and residual stresses during the assembly process as constraints is another contribution of this research to locator adjustments. These methods are applied to three industrial sample cases and the results evaluated. The results illustrate that individualization in locator adjustments can increase geometrical quality improvements three to four times. Accumulation of the potential improvements from both techniques in a smart assembly line is also evaluated in this study. The results indicate that combining the techniques may not increase the geometrical quality significantly relative to using only individualized locator adjustments. A crucial factor in the achievable improvements through individualization is the utilized assembly fixture layout. This study develops a method of designing the optimal fixture layout for sheet metal assemblies. Different design and production strategies are investigated to acquire the maximum potential for geometrical improvements through individualization in self-adjusting smart assembly lines.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)