Development of ring-opening catalysts for diesel quality improvement

Sammanfattning: The global oil refining industry with its present shift inproduct distribution towards fuels such as gasoline and dieselwill most likely hold the fort for many years to come. However,times will change and survival will very much depend onprocessing flexibility and being at the frontiers of refiningtechnology, a technology where catalysts play leading roles.Today oil refiners are faced with the challenge to producefuels that meet increasingly tight environmentalspecifications, in particular with respect to maximum sulphurcontent. At the same time, the quality of crude oil is becomingworse with higher amounts of polyaromatics, heteroatoms(sulphur and nitrogen) and heavy metals. In order to staycompetitive, it is desirable to upgrade dense streams withinthe refinery to value-added products. For example, upgradingthe fluid catalytic cracking (FCC) by-product light cycle oil(LCO) into a high quality diesel blending component is a veryattractive route and might involve a two-step catalyticprocess. In the first step the LCO is hydrotreated andheteroatoms are removed and polyaromatics are saturated, in thesecond step naphthenic rings are selectively opened to improvethe cetane number of the final product. The present research is devoted to the second catalytic stepof LCO upgrading and was carried out within the framework of aEuropean Union project entitled RESCATS. From the patent literature it is evident that iridium-basedcatalysts seem to be good candidates for ring-opening purposes.A literature survey covering ring opening of naphthenicmolecules shows the need for extending investigations toheavier model substances, more representative of the dieselfraction than model compounds such as alkylated mono C5 and C6-naphthenic rings frequently employed in academic studies. Ring-opening catalysts, mainly Pt-Ir based, were synthesisedat KTH by two different methods: the microemulsion and theincipient wetness methods. Characterization of the catalystswas performed using a number of techniques including TPR,TEM-EDX, AFM and XPS etc. Catalytic screening at atmosphericpressure using pure indan as model substance was utilized todetect ring-opening activity and the magnitude of selectivityto desired cetane-boosting products. The development of suchring-opening catalysts is the topic of Paper I. When designing a catalytic system aimed at refiningpetroleum, it is crucial to monitor the evolution of thesulphur distribution throughout the different stages of theprocess so that catalyst properties and reaction parameters canbe optimised. The final section of this thesis and Paper II arethus devoted to high-resolution sulphur distribution analysisby means of a sulphur chemiluminescence detector (SCD). Keywords:ring opening, naphthenes, cetane numberimprovement, indan, light cycle oil (LCO), Pt-Ir catalyst,catalyst characterization, aromatic sulphur compounds, GC-SCD,distribution, analysis.