Atmospheric corrosion of copper and copper-based alloys in architecture : from native surface oxides to fully developed patinas

Sammanfattning: Copper and copper-based alloys are commonly used in both ancient and modern architecture. This requires an in-depth fundamental and applied understanding on their atmospheric corrosion behavior at different climatic, environmental and pollutant levels and how these parameters influence e.g. corrosion initiation, patina characteristics, aesthetic appearances, corrosion rates, and runoff rates. This doctoral thesis elucidates the role of native surface oxides on the corrosion performance, corrosion initiation, formation and evolution of corrosion products from hours to months, years and even centuries, to diffuse dispersion of metals from Cu metal/Cu alloy surfaces focusing on the roles of alloying elements, microstructure, and deposition of chlorides. In-depth investigations have been performed at both laboratory and field conditions on commercial Cu metal and copper-based alloys of a golden alloy (Cu5Zn5Al1Sn) and Sn-bronzes (Cu4Sn, Cu6Sn). Patina characteristics and relations to the presence of microstructural inclusions have in addition been investigated for historic patinas of Cu metal roofing of different age and origin, highlighted with data for a 400 years old Cu patina exposed at urban conditions.A multi-analytical approach comprising microscopic, spectroscopic and electrochemical methods was employed for in-depth investigations of surface characteristics and bulk properties. Electron backscattered diffraction (EBSD) was utilized to characterize the microstructure. Auger electron spectroscopy (scanning-AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES) were employed for surface chemical compositional analysis, and atomic absorption spectroscopy (AAS) to assess the amount of metal release from the patinas. Cathodic reduction (CR) and electrochemical impedance spectroscopy (EIS) were used to assess the amount and corrosion resistance of corrosion products formed at laboratory conditions. Confocal Raman micro-spectroscopy (CRM), infrared reflection absorption spectroscopy (IRAS) and grazing incidence X-ray diffraction (GIXRD) were used to identify the phases of corrosion products. Colorimetry was used to assess surface appearances.Cu5Zn5Al1Sn and Cu4Sn/Cu6Sn exhibit favorable bulk properties with respect to corrosion in terms of smaller grain size compared with Cu metal and show non-significant surface compositional variations. The presence of multi-component native oxides predominantly composed of Cu2O enriched with Sn-oxides on Cu4Sn/Cu6Sn, and with ZnO, SnO2 and Al2O3 on Cu5Zn5Al1Sn, improves the barrier properties of the native surface oxides and the overall corrosion resistance of Cu4Sn/Cu6Sn and Cu5Zn5Al1Sn. The formation of Zn/Al/Sn-containing corrosion products (e.g. Zn5(CO3)2(OH)6 and Zn6Al2(OH)16CO3·4H2O) significantly reduces the corrosion rate of Cu5Zn5Al1Sn in chloride-rich environments. Alloying with Sn reduces the corrosion rate of Sn-bronze at urban environments of low chloride levels but results in enhanced corrosion rates at chloride-rich marine conditions.A clear dual-layer structure patina was observed for centuries-old naturally patinated copper metal with an origin from the roof of Queen Anne's Summer Palace in Prague, the Czech Republic. The patina comprises an inner sub-layer of Cu2O and an outer sub-layer of Cu4SO4(OH)6/Cu3SO4(OH)4. Abundant relatively noble inclusions (mainly rosiaite (PbSb2O6)) were observed and incorporated in both the copper matrix and the patina. The largest inclusions of higher nobility than the surrounding material create significant micro-galvanic effects that result in a fragmentized patina and large thickness ratios between the Cu4SO4(OH)6/Cu3SO4(OH)4 and the Cu2O sub-layer, investigated via a statistical analysis of inclusions and patina characteristics of eight different historic urban copper patinas.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)