Aspects of autonomous corner modules as an enabler for new vehicle chassis solutions

Sammanfattning: This thesis adopts a novel approach to propelling and controlling the dynamics of a vehicle by using autonomous corner modules (ACM). This configuration is characterised by vehicle controlled functions and distributed actuation and offers active and individual control of steering, camber, propulsion/braking and vertical load. Algorithms which control vehicles with ACMs from a state-space trajectory description are reviewed and further developed. This principle involves force allocation, where forces to each tyre are distributed within their limitations. One force allocation procedure proposed and used is based on a constrained, linear, least-square optimisation, where cost functions are used to favour solutions directed to specific attributes. The ACM configuration reduces tyre force constraints, due to lessen estrictions in wheel kinematics compared to conventional vehicles. Thus, the tyres can generate forces considerably differently, which in turn, enables a new motion pattern. This is used to control vehicle slip and vehicle yaw independently. The ACM shows one important potential; the extraordinary ability to ensure vehicle stability. This is feasible firstly due to closed-loop control of a large number of available actuators and secondly due to better use of adhesion potential. The ability to ensure vehicle stability was demonstrated by creating actuator faults. This thesis also offers an insight in ACM actuators and their interaction, as a result of the force allocation procedure.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)