Transition Metal-Catalyzed Redox Reactions : A Journey from Homogeneous Ruthenium to Heterogeneous Palladium Catalysis

Sammanfattning: The first part of the thesis covers the development and utilization of electronically modified (pentaarylcyclopentadienyl)Ru-complexes in the racemization of secondary alcohols. This study revealed that the electronic properties of the substrate were the main factors dictating whether β-hydride elimination or hydride re-addition becomes the rate-determining step of the racemization process. With this knowledge in hand, it proved to be possible to design more efficient racemization protocols by matching the electronic properties of catalyst and substrate.The second part describes mechanistic work that aimed at elucidating the role of CO dissociation in the mechanism of secondary alcohol racemization catalyzed by a (pentaarylcyclopentadienyl)Ru-complex. From CO exchange studies, we demonstrated that CO dissociation occurred in the catalytically active tert-BuO-species as well as in the chloride precatalyst. Furthermore, an inhibition study showed that an increase of the partial pressure of CO had a negative influence on the racemization rate. Together, these two observations provide strong support for CO dissociation as a key step in the racemization of secondary alcohols.The third part concerns the improved synthesis and characterization of a heterogeneous catalyst consisting of Pd nanoparticles immobilized on aminopropyl-functionalized siliceous mesocellular foam. The developed Pd nanocatalyst was found to be a highly efficient and recyclable catalyst for the aerobic oxidation of a wide range of primary and secondary alcohols to the corresponding aldehydes and ketones.The fourth part deals with the successful application of the Pd nanocatalyst in chemically-induced H2O oxidation, when using either ceric ammonium nitrate or [Ru(bpy)3]3+ as the terminal oxidant. Remarkably, the Pd nanocatalyst proved to catalyze this reaction with high efficiency and the measured TOF was found to greatly exceed those of current state-of-the-art metal oxide catalysts.The fifth and final part describes the co-immobilization of Pd nanoparticles and the enzyme Candida Antarctica Lipase B into the same cavities of mesocellular foam, to generate a “metalloenzyme-like” hybrid catalyst for the dynamic kinetic resolution of a primary amine. The close proximity of the two catalytic species led to an enhanced cooperativity between them and resulted in an overall more efficient tandem process. 

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)