Investigating the effect of extending powder particle size distribution of Ti-6Al-4V produced by powder bed fusion laser beam process : Influence of process parameters on material integrity

Sammanfattning: This thesis focuses on the topic of PBF-LB applied to titanium alloys. Of allalloys, an α + β is chosen, named Ti-6Al-4V. The selection of this particular alloy is driven by its current widespread use in many industrial applications where high strength coupled with low density are both desirable properties. For the last 50 years, parts made with this alloy have been cast or forged and then machined to achieve the final geometry. There is now an opportunity totransform this process chain by additive manufacturing, hence reducing material waste and achieving near net shape from powder feedstock.The process is summarised as follows: a laser selectively melts areas on a build plate where powder is pre-placed. Then a successive powder layer is spread and the process is repeated until completion. Upon removal of the part from the build plate, loose powder in the chamber is collected and recycled whenever possible. The design freedom provided by powder bed fusion methods enables production of intricate geometries and added functionality, despite the need for post-build consolidation and/or microstructural adjustments.Today’s fine and narrow powder cuts (e.g., 15-50μm) are designed to be coupled with low layer thicknesses (i.e., 30μm) to achieve smooth surfaces and high resolutions of small features e.g., internal cooling channels. However, costs associated with production of fine and narrow powder cuts are substantial as refinement of batches requires multiple sieving steps. In addition, resulting building times are considerably long (i.e., days), therefore a beneficial alternative could be that of exploring higher layer thicknesses together with wider and coarser powder cuts.The main idea of this work is to investigate the effects of employing a powder with a wider size distribution 15-90μm. The aim is to reduce the sievingrequired and consequently decrease the costs of developing and building parts made by PBF-LB.An extensive microstructural investigation is conducted on single tracks and cubes built with 27 different process parameter combinations, which also attempts to establish correlations between characteristics of tracks and responses measured in cubes. As a second step, the amount of residual porosity of asbuilt cubes is chosen as the discriminant for further mechanical testing of sub and super-β transus high-pressure heat treated material.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)