Mechanism and Regulation of Initiation of Protein Synthesis in Eubacteria

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: Initiation of protein synthesis in E.coli involves several steps, which lead to the formation of the first peptide bond. This process requires three initiation factors: IF1, IF2 and IF3. Using a novel technique of combined light scattering and stopped-flow, we elucidated the importance of IF2•GTP conformation for the recruitment of 50S to 30S pre-initiation complex. Moreover, GTP hydrolysis is essential for IF2 release and later binding of ternary complex. Interestingly, a switch in IF2 affinity to G-nucleotides is induced during 30S pre-initiation complexes formation. We found that IF1, previously with unknown functions in vitro, increases the rate of naked 70S dissociation by a factor 80 and acts as a fidelity factor in preventing 70S formation containing elongator tRNA instead of fMet-tRNAfMet. We showed that RRF/EFG/IF3 split both naked and post-termination complexes while IF1/IF3 split only naked ribosomes. The mechanisms of action of RRF/ EFG, the order of their binding to 70S, as well as, the three different conformation of EF-G on the ribosomes are emphasized. Interestingly, 70S formation rate is dependent on the concentration of IF3 and not linear with 50S subunits concentration. We demonstrated that the rate-limiting step in 70S formation is IF3 dissociation from 30S complexes.The interplay between initiation factors in the rate and accuracy of protein synthesis was thoroughly studied. Using fMet-tRNAfMet (initiator tRNA), Met-tRNAfMet (non-formylated initiator tRNA) and Phe-tRNAPhe (elongator tRNA), we showed that the major player in the accuracy is IF2 through recognizing the formyl group on fMet-tRNAfMet, while IF3 acts by increasing both the on- and off-rate of tRNA from 30S pre-initiation complexes.Collectively, these novel results describe a comprehensive model of initiation of protein synthesis. In this model, initiation factors increase the rate of fMet-tRNAfMet binding to 30S subunits, subsequently; the stabilization of fMet-tRNAfMet by IF2 increases the rate of IF3 dissociation. Later, IF2 in GTP conformation allows 50S docking to 30S pre-initiation complex free of IF3 followed by GTP hydrolysis allowing IF2 release for ternary complex to bind and start elongation of protein synthesis.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)