Sökning: "termisk energilagring"

Visar resultat 6 - 8 av 8 avhandlingar innehållade orden termisk energilagring.

  1. 6. Renewable Heat on Demand : High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design

    Författare :Silvia Trevisan; Björn Laumert; Rafael Guédez; Wujun Wang; Kurt Engelbrecht; KTH; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Energiteknik; Energy Technology;

    Sammanfattning : High-temperature thermal energy storage could enable widespread exploitation of renewable energy sources, providing the required energy flexibility. Technology and component development is needed to enhance the storage thermo-dynamic performance, and identify key design features. LÄS MER

  2. 7. Heat Transfer Enhancement of Latent Thermal Energy Storage in Rectangular Components

    Författare :Amir Abdi; Viktoria Martin; Justin NingWei Chiu; Mohammed Farid; KTH; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Energiteknik; Energy Technology;

    Sammanfattning : Latent Thermal Energy Storage (LTES) is an interesting choice to storethermal energy in a sustainable energy system. The primary benefit of LTESis the relatively high latent heat of fusion of the materials, known as PhaseChange Materials (PCM), used in such a system as the storage medium. LÄS MER

  3. 8. Femtosecond Laser Microfabrication of Glasses and 2D Materials for Photonics and Energy Storage

    Författare :Po-Han Huang; Frank Niklaus; Göran Stemme; Kristinn Gylfason; Yves Bellouard; KTH; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Femtosecond laser; 3D printing; self-organized nanogratings; micromachining; silica glass; silicon-rich glass; hydrogen silsesquioxane; photonic microdevice; microsupercapacitor; 2D materials; direct ink writing; Electrical Engineering; Elektro- och systemteknik;

    Sammanfattning : Femtosecond laser-based fabrication technologies have seen rapid developments in the past decades, thanks to the capability of femtosecond lasers to induce localized multiphoton absorption in materials. Multiphoton absorption can result in various material modifications that can be leveraged for additive and subtractive manufacturing. LÄS MER