Towards Reliable and Accurate Global Structure-from-Motion

Sammanfattning: Reconstruction of objects or scenes from sparse point detections across multiple views is one of the most tackled problems in computer vision. Given the coordinates of 2D points tracked in multiple images, the problem consists of estimating the corresponding 3D points and cameras' calibrations (intrinsic and pose), and can be solved by minimizing reprojection errors using bundle adjustment. However, given bundle adjustment's nonlinear objective function and iterative nature, a good starting guess is required to converge to global minima. Global and Incremental Structure-from-Motion methods appear as ways to provide good initializations to bundle adjustment, each with different properties. While Global Structure-from-Motion has been shown to result in more accurate reconstructions compared to Incremental Structure-from-Motion, the latter has better scalability by starting with a small subset of images and sequentially adding new views, allowing reconstruction of sequences with millions of images. Additionally, both Global and Incremental Structure-from-Motion methods rely on accurate models of the scene or object, and under noisy conditions or high model uncertainty might result in poor initializations for bundle adjustment. Recently pOSE, a class of matrix factorization methods, has been proposed as an alternative to conventional Global SfM methods. These methods use VarPro - a second-order optimization method - to minimize a linear combination of an approximation of reprojection errors and a regularization term based on an affine camera model, and have been shown to converge to global minima with a high rate even when starting from random camera calibration estimations. This thesis aims at improving the reliability and accuracy of global SfM through different approaches. First, by studying conditions for global optimality of point set registration, a point cloud averaging method that can be used when (incomplete) 3D point clouds of the same scene in different coordinate systems are available. Second, by extending pOSE methods to different Structure-from-Motion problem instances, such as Non-Rigid SfM or radial distortion invariant SfM. Third and finally, by replacing the regularization term of pOSE methods with an exponential regularization on the projective depth of the 3D point estimations, resulting in a loss that achieves reconstructions with accuracy close to bundle adjustment.