Cooling Strategies for Wave Power Conversion Systems

Sammanfattning: The Division for Electricity of Uppsala University is developing a wave power concept. The energy of the ocean waves is harvested with wave energy converters, consisting of one buoy and one linear generator. The units are connected in a submerged substation. The mechanical design is kept as simple as possible to ensure reliability.The submerged substation includes power electronics and different types of electrical power components. Due to the high cost of maintenance operations at sea, the reliability of electrical systems for offshore renewable energy is a major issue in the pursuit of making the electricity production economically viable. Therefore, proper thermal management is essential to avoid the components being damaged by excessive temperature increases.The chosen cooling strategy is fully passive, and includes no fans. It has been applied in the second substation prototype with curved heatsinks mounted on the inner wall of the pressurized vessel. This strategy has been evaluated with a thermal model for the completed substation. First of all, 3D-CFD models were implemented for selected components of the electrical conversion system. The results from these submodels were used to build a lumped parameter model at the system level.The comprehensive thermal study of the substation indicates that the rated power in the present configuration is around 170 kW. The critical components were identified. The transformers and the inverters are the limiting components for high DC-voltage and low DC-voltage respectively. The DC-voltage—an important parameter in the control strategy for the WEC—was shown to have the most significant effect on the temperature limitation.As power diodes are the first step of conversion, they are subject to large power fluctuations. Therefore, we studied thermal cycling for these components. The results indicated that the junction undergoes repeated temperature cycles, where the amplitude increased with the square root of the absorbed power.Finally, an array of generic heat sources was optimized. We designed an experimental setup to investigate conjugate natural convection on a vertical plate with flush-mounted heat sources. The influence of the heaters distribution was evaluated for different dissipated powers. Measurements were used for validation of a CFD model. We proposed optimal distributions for up to 36 heat sources. The cooling capacity was maximized while the used area was minimized.