Estimating molecular conformations by solid-state NMR spectroscopy

Detta är en avhandling från Stockholm : Stockholms universitet

Sammanfattning: Our understanding of structure-function relationships in biological systems demands new and more sophisticated methods for examining molecular structure. This thesis presents an effort of methodology development for molecular structure determination by solid-state NMR spectroscopy and applications to biological systems.Rotational Resonance NMR is established as a major tool for extracting molecular structural information in solids. Some further aspects of the technique are explored. The technique is applied to obtain the binding conformation of an inhibitor, TMPIP, bound to gastric H+/K+-ATPase, an ab heterodimer with a molecular weight of over 150 kDa.A novel solid-state NMR method for the determination of the torsional angle of a 13C-labeled H-C-C-H moiety is developed. A detailed theoretical introduction of the method is presented. The technique has been applied to determine the H-C10-C11-H torsional angle of the retinylidene chromophore in bovine rhodopsin, a 41 kDa integral membrane protein, and its photo-intermediate metarhodopsin-I.A new solid-state NMR method is developed. It may be used to estimate the Ramachandran ( angle in a protein backbone chain. A detailed theory is presented. It is demonstrated on an isotopically labeled tripeptide.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.