Cantor-Alloy-Based Multicomponent Nitride Thin Films

Sammanfattning: In this Thesis, I have investigated multicomponent alloy based thin films synthesized by magnetron sputtering. The studies in the thesis are centered around the phase diagram of the CrFeCoNi nitrogen containing system. Theoretical and experimental methods were employed to understand the phase formation in this system which is related to the archetypical Cantor alloy (CrMnFeCoNi). CrFeCoNi thin films of approximately equimolar composition crystallize with fcc structure when grown at room temperature. This structure, however, is not retained when nitrogen (x) is added into the lattice. Density functional theory calculations together with the experimental investigation on the (CrFeCoNi)Nx system revealed the stabilization of the metallic fcc when x ≤ 0.22 and the stabilization of the NaCl B1 structure when x > 0.33, consistent with the theoretical prediction. In contrast, films with intermediate amounts of nitrogen (x = 0.22) grown at higher temperatures show segregation into multiple phases of CrN, Fe-Ni-rich and Co. These results offer an explanation for the requirement of kinetically limited growth conditions at low temperature for obtaining single-phase CrFeCoNi Cantor-like nitrogen-containing thin films. The importance of the phase diagram is realized when attempting to grow much more complex structures for application-oriented research such as irradiation resistance, corrosion resistance as well as epitaxial films for a fundamental understanding of the material system. The phase diagram of the CrFeCoNi system indicated that higher stability of the single-phase solid solution Cantor nitride lay in a limited temperature range of 200 to 300 °C. In order to compensate for the higher deposition temperature required to grow epitaxial films magnetic field assisted dc magnetron sputtering was used. This technique allows for the control of the flux of Ar ions bombarding the substrate during growth thereby providing the growing film with kinetic energy as opposed to thermal. The results from the study indicated that the quality of epitaxy can be improved by increasing low ion energy, high ion-flux bombardment. The thesis in whole, gives a fundamental understanding of the nitride cantor alloy material system in terms of crystal structure, mechanical and electrical properties.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.