Tendon Healing : Mechanical Loading, Microdamage and Gene Expression

Sammanfattning: Mechanical loading and the inflammatory response during tendon healing might be important for the healing process. Mechanical loading can improve the healing tendon but the mechanism is not fully understood. The aim of this thesis was to further clarify the effect of mechanical loading on tendon healing and how mechanical loading affects the inflammatory response during the healing process.We used a rat Achilles tendon model to study healing. The rats were exposed to different degrees of loading by unloading methods such as paralysis of the calf muscles with Botox, tail suspension, and an orthosis (a boot). Full loading was achieved by free cage activity or treadmill walking. Microdamage in tendons, unloaded with Botox, was also investigated by needling. The healing tendons were evaluated in a materials testing machine (to analyze the mechanical properties), by gene expression analysis (microarray and PCR), or histology.Our results show that moderate loading (unloading with Botox) improves the mechanical properties of healing tendons compared to minimal loading (unloading with Botox in combination with tail suspension or a boot), especially the material properties. In accordance to these findings, expression of extracellular matrix genes were also increased by moderate compared to minimal loading.Full loading improved all mechanical properties and the expression of extracellular matrix genes was further increased compared to moderate loading. However, structural properties, such as the strength and the size of the healing tendon, were more affected by full loading. Full loading also affected the expression of inflammation-related genes during the early healing phase, 3 and 5 days after tendon injury, and increased the number of immune cells in the healing tendon tissue. Also microdamage of the healing tendon (detected by blood leakage) was increased by full loading compared to moderate loading during the early healing phase.Induced microdamage by repeated needling in the healing tendon tissue increased the structural properties of the healing tendon. The gene expression after needling was similar to the gene expression after full loading.The improvement of mechanical properties by loading in healing tendons was decreased by an anti-inflammatory drug called parecoxib, which decreases the production of prostaglandins by inhibiting COX-2 activity. The effect of parecoxib was reduced when loading was reduced but we could not confirm that the effect of parecoxib was related to the degree of loading. However, parecoxib abolished the stimulatory effect of microdamage.In conclusion, these studies show that moderate loading improves the quality of the healing tendon whereas full loading also increases the quantity of the healing tendon tissue. Full loading creates microdamage and increases inflammation during the early healing phase. The strong effect of full loading on the structural properties might be due to microdamage. Indeed, the anti-inflammatory drug parecoxib seems to impair mechanical stimulation of healing tendons by reducing the response to microdamage.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.