Simulations of cavitation - from the large vapour structures to the small bubble dynamics

Sammanfattning: Very few people around us know the meaning of the word cavitation, except from those who saw the movie "The Hunt for Red October" and can relate cavitation to Sean Connery in a submarine. Some of them know that it corresponds to the formation of bubbles, due to a pressure drop, and causes erosion and noise. However, cavitation is much more complex. A large amount of research work has been done over the last thirty years in order to improve the understanding of the interactions between the various physical processes involved. The present work aims at gaining more knowledge about cavitation in water turbines. Some of the properties of cavitation at a water turbine runner blade are similar to those at a hydrofoil in a water test tunnel. Therefore, the overall purpose of this work is to improve the numerical models for cavitation inception and development on a hydrofoil. The focus of this thesis lies on numerical methodologies that include the broad range of cavity sizes, using appropriate models for each specific phenomenon. The smallest bubbles, called nuclei, are tracked in the flow with the Discrete Bubble Model, and their dynamics is resolved with the Rayleigh-Plesset equation. This approach can predict how the nuclei are transported over a hydrofoil to regions of low static pressure, where they grow and either collapse or contribute to the formation of large-scale vapour cavities. The large non-spherical structures are commonly modelled using the Volume-Of-Fluid method together with a mass transfer model for vaporisation and condensation. This approach predicts the development of the vapour cavity, such as its breakup and the shedding process observed experimentally in the context of cavitating hydrofoils. The present work implements the above-mentioned models in the OpenFOAM C++ library, and performs simulations to assess the performance of the models. A new multiscale model is developed, implemented and used on a cavitating hydrofoil. The multi-scale model includes both the small spherical bubbles, the large non-spherical vapour structures, and the transition between those regimes.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)