Theoretical methods for the electronic structure and magnetism of strongly correlated materials

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics.In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general.In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization.In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)