Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

Sammanfattning: Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an increased adenosine production (evidenced by increased 5’-nucleotidase activity) and the successively lower adenosine levels observed in the interstitial space. We propose that this discrepancy in adenosine production vs. availability may be due to an increased metabolic utilisation of adenosine by the IP myocardium. According to our hypothesis, IP induces/activates a metabolic pathway involving deamination of adenosine to inosine. Inosine is further catalysed (in presence of Pi) to hypoxanthine and ribose-1-phosphate. Ribose-1-phosphate can be converted to ribose-5-phosphate in a phosphoribomutase reaction. Ribose-5-phosphate is an intermediate of the hexose monophosphate pathway also operative under anaerobic conditions. Hence the ribose moiety of adenosine can be utilised to generate pyruvate and ultimately ATP (via lactate formation) n.b. without any initial ATP investment. Such cost-effective adenosine utilisation may at least partly explain the cardioprotective effect of IP. Objectives & Methods: In the current studies we investigated the role of adenosine metabolism according to the suggested metabolic pathway by addition of adenosine and inhibition of its metabolism during IP as well as by comparing tissue and interstitial levels of key energy-metabolites following different protocols of IP. Furthermore, we studied the importance of the IP protocol with regard to the number of ischemia and reperfusion cycles for the cardioprotective effect of IP. In addition, the validity of the microdialysis technique for experimental in vivo studies of myocardial energy metabolism was evaluated. For these purposes the microdialysis technique, tissue biopsies, and planimetric infarct size estimation in an open chest porcine heart-model was used. Results: Addition of adenosine via microdialysis probes enhanced the interstitial release of inosine, hypoxanthine and lactate in the myocardium of IP-subjects during prolonged ischemia. This finding did not occur in non-preconditioned subjects. Similar addition of deoxyadenosine a non-metabolizable adenosine receptor-agonist, did not evoke the same metabolic response. Purine nucleoside phosphorylase (PNP) is responsible for the conversion of inosine to hypoxanthine being a key enzyme in the above mentioned metabolic pathway. Inclusion of 8' aminoguanosine (a competitive inhibitor of PNP) decreased interstitial hypoxanthine release (as a token of PNP inhibition) and increased the release of taurine (marker of cellular injury) in the ischemic IP myocardium. Addition of inosine (a natural substrate of PNP) reverted these changes. Four IP cycles protected the heart more than one IP cycle as evidenced by morphometric and energy-metabolic data.Proportionally more hypoxanthine was found in the myocardium of IP subjects during prolonged ischemia. The ratio of tissue levels of inosine/hypoxanthine (used as an indicator of PNP activity) was significantly smaller in the IP groups. In addition, myocardial interstitial levels of energy-related metabolites (lactate, adenosine, inosine, and hypoxanthine) obtained by the microdialysis technique correlated with tissue biopsy levels of corresponding metabolites. Conclusions: IP activated a metabolic pathway favouring metabolism of exogenous adenosine to inosine, hypoxanthine and eventually lactate. Inhibition of adenosine metabolism following IP (via inhibition of PNP-activity resulted in enhanced cellular injury.PNP-activity is proportionally higher in IP-myocardium. Metabolic utilisation of adenosine in IP-myocardium (as outlined above) may represent a costeffective way to produce ATP and at least partly explain the cardioprotective effect of IP. IP protects the myocardium in a graded fashion. Furthermore, we confirmed the validity of the microdialysis technique (in the current setting) for studying dynamic changes of myocardial energy metabolism.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)