Dual Targeting of Proteins to Mitochondria and Chloroplasts

Detta är en avhandling från Stockholm : Department of Biochemistry and Biophysics, Stockholm University

Sammanfattning: The vast majority of mitochondrial and chloroplastic proteins are nuclear encoded, synthesized in the cytosol and imported into the respective organelle using an N-terminal extension, the targeting peptide (TP). After import into the organelle, the TP is cleaved off and degraded by the Presequence protease (PreP). The import process is thought to be highly specific, however there is a group of proteins that are localised to both mitochondria and chloroplasts, using an ambiguous, dual targeting peptide (dTP). The aim of this thesis was to investigate targeting properties of dTPs. Analysis of the amino acid content of all currently known dually targeted proteins revealed that the dTPs are enriched in hydroxylated, hydrophobic and positively charged residues, lacking acidic residues, whereas the content of serine, arginine and proline is intermediary in comparison to the mitochondrial and chloroplastic TPs. dTPs do not form amphiphilic a-helices, characteristic of the mitochondrial TPs, but the helical structure can be induced in membrane mimetic environment, as revealed by spectroscopic studies of a dTP of an aminoacyl- tRNA-synthetase (aaRS). In vitro and in vivo import experiments of fusion constructs containing N-terminal truncations of seven aaRS-dTPs coupled to green fluorescent protein (GFP) demonstrated different organisation of targeting determinants showing that the N-terminal portion of dTPs was crucial for import into both organelles or at least one organelle for different constructs. In addition, studies of targeting capacity of the TPs of PreP homologues from plant, mammal and yeast (AtPreP, hPreP and Mop112) showed species dependent intra-mitochondrial localisation of the coupled GFP and demonstrated functional complementation of an intermembrane space located Mop112 with a matrix located AtPreP. The studies presented here contribute to understanding of the intracellular and intra-mitochondrial sorting process of proteins in the eukaryotic cell.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.