Designing order with long-range interactions in mesoscopic magnetic chains

Sammanfattning: This thesis investigates how the low-energy magnetic configuration of a mesoscopic chain can be tuned by geometrical modifications. The magnetic arrays made by single-domain stadium shaped elements positioned side-by-side were fabricated by patterning into a sputtered ferromagnetic thin film. The thickness of the thin film was determined by X-ray reflectivity measurements while Scanning Electron Microscopy and Atomic Force Microscopy were used to characterize the surface morphology of the nanostructures. Magnetic Force Microscopy was used to image the magnetic configuration of mesoscopic chains after applying a thermal annealing protocol and a field demagnetization protocol. By gradually modifying the geometrical arrangement of the half of mesospins, the magnetic chain is found to exhibit a transition from antiferromagnetic to dimer antiferromagnetic configuration after the thermal annealing treatment. After the field demagnetization protocol, both antiferromagnetic and dimer antiferromagnetic domains are formed. Micromagnetic simulations were performed to investigate how the interaction between the mesospins is affected by the geometrical modifications and a qualitative method was invented to examine the theoretical low-energy state of the magnetic chains. It is found that the low-energy magnetic configuration of the mesoscopic arrays is formed after the competition and collaboration of different interactions and is the one observed after the thermal annealing treatment. 

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)