Simple Models for Complex Nonequilibrium Problems in Nanoscale Friction and Network Dynamics

Sammanfattning: This doctoral thesis investigates three different topics: How friction evolves in atomically thin layered materials (2D materials); How social dynamics can be used to model grand scale common-pool resource games; Benchmarking of various image reconstruction algorithms in atomic force microscopy experiments. While these topics are diverse, they share being complex out-of-equilibrium systems. Furthermore, our approach to these topics will be the same: using simple models to obtain qualitative information about a system's dynamics. In the case of atomically thin layered materials, we will be expanding on the influential Prandtl-Tomlinson model and obtain an improved model constituting a substantial improvement in the theoretical description of friction in these systems. In the context of social dynamics, we will introduce a novel model representing a new approach to consensus rates on social networks in relation to society spanning coordination problems. For the image reconstruction project, our ambition is to investigate a new method for recreating free-energy surfaces based on AFM experiment, however, for this project only preliminary results are included.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.