Organic Electrochemical Transistors : Materials and Challenges

Sammanfattning: The use of organic mixed ionic-electronic conductors (OMIECs) has demonstrated the potential to transform the field of bioelectronics, spanning from medical diagnostics to neuromorphic computing hardware. To keep up with the fast-paced demands, it is crucial to develop customizable device fabrication, design new materials, improve operation stability, and explore the ion-electron interactions within OMIECs. This thesis explores the application of OMIECs in organic electrochemical transistors (OECTs), a crucial component of a range of organic bioelectronic devices.   To meet applications requiring rapid design iterations and leveraging digitally enabled direct-write techniques, we developed a novel approach for fabricating fully 3D-printed OECTs using a direct-write additive process. This method involves utilizing 3D printable inks with conductive, semiconductive, insulating, and electrolyte properties. The resulting fully 3D-printed OECTs operate in the depletion mode and can be produced on flexible substrates, ensuring excellent mechanical durability and resilience in various environmental conditions. These 3D-printed OECTs exhibit impressive dopamine biosensing capabilities, detecting concentrations as low as 6 µM without the need for metal gate electrodes. Furthermore, they demonstrate long-term memory response lasting up to approximately 1 hour, highlighting their potential for diverse applications such as sensors and neuromorphic hardware.   We have addressed the issue of sluggish response times in printed OECTs by utilizing multi-walled carbon nanotubes (MWCNTs) and the π-conjugated redox polymer called poly(benzimidazobenzo-phenanthroline) (BBL) to create high-performing n-type OECTs. By incorporating MWCNTs, we were able to improve the electron mobility of the transistors by more than 10 times, resulting in a rapid response time of just 15 ms and a high μC' value (which is the product of electron mobility and volumetric capacitance) of approximately 1 F cm–1 V−1 s−1. These breakthroughs have allowed us to develop complementary inverters that have a voltage gain of over 16, a significant worst-case noise margin at a supply voltage lower than 0.6 V and consume less than 1 µW of power.  However, the operational stability of complementary inverters is hindered by the degradation of p-type OMIECs. The oxygen reduction reaction (ORR) is a common electrochemical side reaction that poses challenges to the stability of OECTs, but the underlying connection between ORR and material degradation remains poorly understood. In our investigation, we examined the influence of ORR on the stability and degradation mechanisms of thiophene-based OECTs. Our findings reveal that the polymer backbone experiences degradation as a result of the pH increase during ORR. To address this issue, we introduced a protective polymer glue layer between the semiconductor channel and the aqueous electrolyte, effectively suppressing the occurrence of ORR and significantly enhancing the stability of the OECTs. This improvement is evident in the nearly 90% retention of current during ≈2 hours of cycling in the saturation regime.  Finally, we investigated the ionic-electronic transport properties in BBL-based OECTs using various electrolytes. We found that the peak drain current is achieved at a doping level of 1 electron per repeating unit, decreasing thereafter. The interaction between ions and the polymer reduces the voltage needed for this level of doping but also lowers the peak drain current. Unlike thiophene-based OECTs, larger cation sizes don't improve BBL-based OECT performance. Additionally, Lewis acids adversely affect BBL's electrical properties due to their impact on the polymer microstructure.  We hope these studies will inspire our peers in the field of materials synthesis, device processing, and scalable digital techniques, paving the way for next-generation, reliable, and safe bioelectronics. 

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.