Electron beam melting: Impact of part surface properties on metal fatigue and bone ingrowth

Sammanfattning: AbstractThe aim of this thesis is to investigate aspects on how additive manufacturing (AM) contributes to functional bone implants with the use of the electron beam melting (EBM) technology. AM manufactures parts according to computer-aided design, and the EBM technology melts powder using an electron beam, which acts similar to a laser beam. The topics discussed in this thesis are related to surface roughness that originate from the melted metal powder, and the thesis tries to define some aspects that affect implant functionality. Process parameters steering the electron beam and biocompatibility arising from the surface texture were the initial parts of the PhD studies, and the other half focused on post-processing and fatigue, which are important for medical and industrial applications. There are six studies in this compilation thesis. They are abbreviated as P - process parameters, M - medical applications, and F - fatigue. Studies P, M2, F2, and F3 are journal articles, and M1 and F1 are conference proceedings.Study P used design of experiments to investigate how process parameters affect the surface roughness of as-built EBM-manufactured parts and concluded that beam speed and energy (current) were the most important parameters that influence the surface roughness.In studies M1 and M2, EBM-manufactured specimens of cobalt-chromium and titanium alloys were used to evaluate biocompatibility. The blood chamber method quantified the reactions of the human whole blood in contact with the metal surfaces, and the results showed how the as-built EBM surface roughness contributed to coagulation and bone healing.Rotating beam fatigue equipment was used in studies F1–F3 and study F1 discussed the size effect on fatigue loaded as-built specimens and included specimens with different sizes and with or without hot isostatic pressing (HIP). Study F2 compared as-built and machined specimens and study F3 investigated how Hirtisation, which is a patented electrochemical surface treatment, and HIP affect the fatigue properties that originate from the electrochemical polishing surface topography. The studies showed that a decreased surface roughness increased the fatigue resistance while the stress concentrations (Kt) in the surface of EBM-manufactured specimens decreased.The thesis concludes that EBM-manufactured as-built surfaces are suitable for direct contact with the bone, and that HIP does not improve the fatigue resistance of parts with as-built surfaces, where crack initiation starts at notches.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)