Sökning: "structural homology"

Visar resultat 1 - 5 av 87 avhandlingar innehållade orden structural homology.

  1. 1. Structural studies of sugar binding proteins

    Författare :Sanjeewani Sooriyaarachchi; Sveriges lantbruksuniversitet; Sveriges lantbruksuniversitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES;

    Sammanfattning : Binding proteins, which are themselves non-enzymatic, play an important role in enzymatic reactions as well as non-enzymatic processes by providing a binding platform for the specific recognition of particular molecules. For example, periplasmic binding proteins play a vital role in nutrient uptake in Gram-negative bacteria. LÄS MER

  2. 2. New Paradigms in GPCR Drug Discovery : Structure Prediction and Design of Ligands with Tailored Properties

    Författare :Mariama Jaiteh; Jens Carlsson; David E Gloriam; Uppsala universitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; G Protein-Coupled Receptor; Molecular Docking; Virtual Screening; Homology Modeling; Molecular Dynamics Simulation; Chemical Library; Functionally Selective Ligand; Polypharmacology; Dimerization; Biology with specialization in Molecular Biotechnology; Biologi med inriktning mot molekylär bioteknik;

    Sammanfattning : G protein-coupled receptors (GPCRs) constitute a large superfamily of membrane proteins with key roles in cellular signaling. Upon activation by a ligand, GPCRs transduce signals from the extracellular to the intracellular environment. LÄS MER

  3. 3. Computational Modelling of Ligand Complexes with G-Protein Coupled Receptors, Ion Channels and Enzymes

    Författare :Lars Boukharta; Johan Åqvist; Christopher A. Reynolds; Uppsala universitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; computer simulations; molecular dynamics; ligand binding; free energy perturbation; linear interaction energy; binding free energy; homology modelling; structure prediction; alanine scanning; site-directed mutagenesis; hERG; GPCR; neuropeptide Y; HIV-1 reverse transcriptase; integron integrase; Molecular Biotechnology; Molekylär bioteknik;

    Sammanfattning : Accurate predictions of binding free energies from computer simulations are an invaluable resource for understanding biochemical processes and drug action. The primary aim of the work described in the thesis was to predict and understand ligand binding to several proteins of major pharmaceutical importance using computational methods. LÄS MER

  4. 4. Unveiling Mechanistic Details of Macromolecular Interactions: Structural Design and Molecular Modelling of DNA-Protein Systems in Their Active State

    Författare :Anna Reymer; Chalmers tekniska högskola; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; MEDICIN OCH HÄLSOVETENSKAP; MEDICAL AND HEALTH SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; molecular modelling; intercalation; homologous recombination; DNA; ruthenium II polypyridyl compounds; human Rad51;

    Sammanfattning : Molecular structure is fundamental for understanding mechanisms of molecular interactions. This applies not least to understanding biological function: every biological cell, whether bacterial or human, is an immensely complex system of thousands of molecules that exist in constant motion and interaction with each other. LÄS MER

  5. 5. Protein structure prediction : Zinc-binding sites, one-dimensional structure and remote homology

    Författare :Nanjiang Shu; Sven Hovmöller; Bruce Donald; Geoff Barton; Stockholms universitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; protein structure prediction; zinc-binding; profile; homology detection; shape string; Bioinformatics; Bioinformatik; Molecular biology; Molekylärbiologi; Biochemistry; Biokemi; Structural Chemistry; strukturkemi;

    Sammanfattning : Predicting the three-dimensional (3D) structure of proteins is a central problem in biology. These computationally predicted 3D protein structures have been successfully applied in many fields of biomedicine, e.g. family assignments and drug discovery. LÄS MER