Sökning: "orthogonal algebra"

Visar resultat 1 - 5 av 9 avhandlingar innehållade orden orthogonal algebra.

  1. 1. Topics on Function Spaces and Multilinear Algebra

    Detta är en avhandling från Göteborg : University of Gothenburg

    Författare :Mahdi Hormozi; Göteborgs universitet.; Gothenburg University.; [2013]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES;

    Sammanfattning : The present thesis consists of three different papers. Indeed, they treat two different research areas: function spaces and multilinear algebra. In paper I, a characterization of continuity of the $p$-$\Lambda$-variation function is given and Helly's selection principle for $\Lambda BV^{(p)}$ functions is established. LÄS MER

  2. 2. Reordering in Noncommutative Algebras, Orthogonal Polynomials and Operators

    Detta är en avhandling från Västerås : Mälardalen University

    Författare :John Musonda; Mälardalens högskola.; [2018]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; Mathematics Applied Mathematics; matematik tillämpad matematik;

    Sammanfattning : The main object studied in this thesis is the multi-parametric family of unital associative complex algebras generated by the element $Q$ and the finite or infinite set $\{S_j\}_{j\in J}$ of elements satisfying the commutation relations $S_jQ=\sigma_j(Q)S_j$, where $\sigma_j$ is a polynomial for all $j\in J$. A concrete representation is given by the operators $Q_x(f)(x)=xf(x)$ and $\alpha_{\sigma_j}(f)(x)=f(\sigma_j(x))$ acting on polynomials or other suitable functions. LÄS MER

  3. 3. Algorithmic Methods in Combinatorial Algebra

    Detta är en avhandling från Centre for Mathematical Sciences, Lund University

    Författare :Anna Torstensson; Lunds universitet.; Lund University.; [2003]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; algebraic geometry; field theory; Number Theory; maximal symmetry group; resultant; SAGBI basis; Orthogonal decomposition; algebra; group theory; Talteori; fältteori; algebraisk geometri; gruppteori;

    Sammanfattning : Popular Abstract in Swedish Avhandlingen, som består av tre delar, handlar om olika metoder för att undersöka algebraiska begrepp med hjälp av datorberäkningar. I första delen visar vi att en viss Liealgebra inte, till skillnad från många andra Liealgebror av liknande typ, kan brytas ned i vinkelräta komponenter av en speciellt enkel typ. LÄS MER

  4. 4. Problems in the Classification Theory of Non-Associative Simple Algebras

    Detta är en avhandling från Uppsala : Universitetsbiblioteket

    Författare :Erik Darpö; Uppsala universitet.; [2009]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; Division algebra; flexible algebra; normal form; composition algebra; absolute valued algebra; vector product; rotation.; MATHEMATICS; MATEMATIK;

    Sammanfattning : In spite of its 150 years history, the problem of classifying all finite-dimensional division algebras over a field k is still unsolved whenever k is not algebraically closed. The present thesis concerns some different aspects of this problem, and the related problems of classifying all composition and absolute valued algebras. LÄS MER

  5. 5. Multivariable Orthogonal Polynomials as Coupling Coefficients for Lie and Quantum Algebra Representations

    Detta är en avhandling från Centre for Mathematical Sciences, Lund University

    Författare :Hjalmar Rosengren; Lunds universitet.; Lund University.; [1999]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; higher order Hankel form; Wigner symbol; quadratic algebra; Clebsch-Gordan coefficient; quantum group; Lie group; highest weight representation; multivariable orthogonal and biorthogonal polynomials; multivariable hypergeometric and basic hypergeometric functions; algebraisk topologi; Geometry; Geometri; algebraic topology;

    Sammanfattning : The main topic of the thesis is the connection between representation theory and special functions. We study matrix elements, coupling coefficient, and recoupling coefficients for the simplest Lie and quantum groups. LÄS MER