Sökning: "matematisk utveckling"

Visar resultat 1 - 5 av 36 avhandlingar innehållade orden matematisk utveckling.

  1. 1. G-Convergence and Homogenization of some Sequences of Monotone Differential Operators

    Detta är en avhandling från Östersund : Mittuniversitetet

    Författare :Liselott Flodén; Mittuniversitetet.; [2009]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; G-convergence; Homogenization; Multiscale convergence; Two-scale convergence; Monotone opertors; Functional analysis; Partial differential equations; MATHEMATICS Algebra; geometry and mathematical analysis Mathematical analysis; MATEMATIK Algebra; geometri och analys Analys;

    Sammanfattning : This thesis mainly deals with questions concerning the convergence of some sequences of elliptic and parabolic linear and non-linear operators by means of G-convergence and homogenization. In particular, we study operators with oscillations in several spatial and temporal scales. LÄS MER

  2. 2. Homogenization of Some Selected Elliptic and Parabolic Problems Employing Suitable Generalized Modes of Two-Scale Convergence

    Detta är en avhandling från Östersund : Mittuniversitetet

    Författare :Jens Persson; Mittuniversitetet.; [2010]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; H-convergence; G-convergence; homogenization; multiscale analysis; two-scale convergence; multiscale convergence; elliptic partial differential equations; parabolic partial differential equations; monotone operators; heterogeneous media; non-periodic media; MATHEMATICS Algebra; geometry and mathematical analysis Mathematical analysis; MATEMATIK Algebra; geometri och analys Analys;

    Sammanfattning : The present thesis is devoted to the homogenization of certain elliptic and parabolic partial differential equations by means of appropriate generalizations of the notion of two-scale convergence. Since homogenization is defined in terms of H-convergence, we desire to find the H-limits of sequences of periodic monotone parabolic operators with two spatial scales and an arbitrary number of temporal scales and the H-limits of sequences of two-dimensional possibly non-periodic linear elliptic operators by utilizing the theories for evolution-multiscale convergence and ?-scale convergence, respectively, which are generalizations of the classical two-scale convergence mode and custom-made to treat homogenization problems of the prescribed kinds. LÄS MER

  3. 3. Selected Topics in Homogenization

    Detta är en avhandling från Östersund : Mittuniversitetet

    Författare :Jens Persson; Mittuniversitetet.; [2012]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; homogenization theory; H-convergence; two-scale convergence; very weak two-scale convergence; multiscale convergence; very weak multiscale convergence; evolution-multiscale convergence; very weak evolution-multiscale convergence; ?-scale convergence; non-periodic linear elliptic problems; evolution-multiscale linear parabolic problems; evolution-multiscale monotone parabolic problems; detection of scales of heterogeneity;

    Sammanfattning : The main focus of the present thesis is on the homogenization of some selected elliptic and parabolic problems. More precisely, we homogenize: non-periodic linear elliptic problems in two dimensions exhibiting a homothetic scaling property; two types of evolution-multiscale linear parabolic problems, one having two spatial and two temporal microscopic scales where the latter ones are given in terms of a two-parameter family, and one having two spatial and three temporal microscopic scales that are fixed power functions; and, finally, evolution-multiscale monotone parabolic problems with one spatial and an arbitrary number of temporal microscopic scales that are not restricted to be given in terms of power functions. LÄS MER

  4. 4. “Count on me!” Mathematical development, developmental dyscalculia and computer-based intervention

    Detta är en avhandling från Linköping : Linköping University Electronic Press

    Författare :Linda Olsson; Linköpings universitet.; Linköpings universitet.; [2018]
    Nyckelord :SAMHÄLLSVETENSKAP; SOCIAL SCIENCES; mathematical development; symbolic number processing; Approximate number system; developmental dyscalculia; computer-based intervention; matematisk utveckling; symboliskt nummerprocessande; Approximativa nummersystemet; dyskalkyli; datorbaserad intervention;

    Sammanfattning : A “sense” of number can be found across species, yet only humans supplement it with exact and symbolic number, such as number words and digits. However, what abilities leads to successful or unsuccessful arithmetic proficiency is still debated. LÄS MER

  5. 5. Matematikens utveckling i Sverige fram till 1731

    Detta är en avhandling från Uppsala : Matematiska institutionen

    Författare :Staffan Rodhe; Uppsala universitet.; [2002]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; Mathematics; MATEMATIK; Swedenborg; Polhem; Duhre; Klingenstierna; svensk matematikhistoria; serier; oändligt lilla; infinitesimal; oändlighet; kalkyl; Bernoulli; professor; Uppsala; differential; MATHEMATICS; MATEMATIK; Mathematics; Matematik;

    Sammanfattning : This thesis contains two parts:In the first papers I consider the development of mathematics up till around 1720. I have done a special study of the period between 1710 and 1720, when you could find three Swedes writing about contemporary mathematics, Christopher Polhem, Emanuel Swedenborg and Anders Gabriel Duhre. LÄS MER