Sökning: "life-cycle model"

Visar resultat 1 - 5 av 273 avhandlingar innehållade orden life-cycle model.

  1. 1. Integrated Life Cycle Design - Applied to concrete multi-dwelling buildings

    Författare :Mats Öberg; Avdelningen för Byggnadsmaterial; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; livslängd; materialval; energianvändning; inomhusklimat; livscykelanalyser; livscykelkostnader; hållbar utveckling; Sustainable construction; Building construction; Service life design; Multiple Attribute Decision Analysis; Energy efficient buildings; Life Cycle Assessment; projektering; betongkonstruktioner; flerbostadshus; Byggnadsteknik; Integrated life cycle design; Life Cycle Costing;

    Sammanfattning : The objective of this work is to explore ways of enhancing the overall lifetime quality, including cost and environmental efficiency, of Swedish concrete multi-dwelling buildings. The building and its characteristics, as well as the procedures for whole life optimisation, are addressed. LÄS MER

  2. 2. Environmental Life-cycle Assessment in Microelectronics Packaging

    Författare :Anders Andrae; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; System-In-a-Package; microelectronics packaging; data collection; attributional environmental life-cycle assessment; uncertainty analysis; upstream processes; consequential life-cycle assessment; environmental life-cycle inventory; microelectronic products;

    Sammanfattning : An increased understanding of the application of environmental Life-Cycle Assessment (LCA) methodologies in the microelectronics packaging area should help in developing environmentally sound product systems. The aim of the present thesis is to increase the knowledge of using LCA tools, methods and models, in application to current and new microelectronic products. LÄS MER

  3. 3. Buildings in municipal climate change mitigation strategies : towards life cycle thinking

    Författare :Nicolas Francart; Tove Malmqvist; Martin Erlandsson; Paula Femenias; KTH; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; building; lca; requirement; environmental performance; futures studies; backcasting; environmental engineering; sustainable urban planning; Planering och beslutsanalys; Planning and Decision Analysis; Byggvetenskap; Civil and Architectural Engineering;

    Sammanfattning : Fulfilling climate targets requires ambitious changes. The building sector is a large contributor to emissions of greenhouse gases (GHG), but also offers opportunities for climate change impact reductions. LÄS MER

  4. 4. Life Cycle Assessment and Decision Making: Theories and Practices

    Författare :Henrikke Baumann; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; life cycle assessment; LCA practice; LCA methodology; LCA modelling; institutionalisation; LCA procedure; life cycle accounting; LCA; systems analysis; decision making;

    Sammanfattning : Life cycle assessment (LCA) has been in use to a varying extent since the late 1960s. The fact that LCA methodology needs further development is a frequently identified barrier to the further application of LCA. Consequently, the literature with suggestions for improving LCA methodology is extensive. LÄS MER

  5. 5. Advancing the life cycle energy optimisation methodology

    Författare :Hamza Bouchouireb; Ciarán J. O'Reilly; Peter Göransson; Rupert J. Baumgartner; José Potting; Tracy Bhamra; KTH; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; HUMANIORA; HUMANITIES; life cycle energy; vehicle design; optimisation; functional conflicts; livscykelenergi; fordonsdesign; optimering; tvär-funktionella konflikter; Vehicle and Maritime Engineering; Farkostteknik;

    Sammanfattning : The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, while complying with a set of functional constraints. This effectively balances trade-offs, and therewith avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, operation of the vehicle, and end-of-life phases. LÄS MER