Sökning: "a posteriori error estimate"

Visar resultat 1 - 5 av 20 avhandlingar innehållade orden a posteriori error estimate.

  1. 1. Finite element approximation of the deterministic and the stochastic Cahn-Hilliard equation

    Detta är en avhandling från Göteborg : Chalmers University of Technology

    Författare :Ali Mesforush; Göteborgs universitet.; Gothenburg University.; [2010]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; finite element; a priori error estimate; stochastic integral; mild solution; dual weighted residuals; a posteriori error estimate; additive noise; Wiener process; Cahn-Hilliard equation; existence; regularity; Lya- punov functional; stochastic convolution;

    Sammanfattning : This thesis consists of three papers on numerical approximation of the Cahn-Hilliard equation. The main part of the work is concerned with the Cahn-Hilliard equation perturbed by noise, also known as the Cahn-Hilliard-Cook equation. LÄS MER

  2. 2. The Finite Element Method for Fractional Order Viscoelasticity and the Stochastic Wave Equation

    Detta är en avhandling från Göteborg : Chalmers University of Technology and University of Gothenburg

    Författare :Fardin Saedpanah; Göteborgs universitet.; Gothenburg University.; [2009]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; finite element method; continuous Galerkin method; linear viscoelasticity; fractional calculus; fractional order viscoelasticity; weakly singular kernel; stability; a priori error estimate; a posteriori error estimate; stochastic wave equation; additive noise; Wiener process; strong convergence.;

    Sammanfattning : This thesis can be considered as two parts. In the first part a hyperbolic type integro-differential equation with weakly singular kernel is considered, which is a model for dynamic fractional order viscoelasticity. In the second part, the finite element approximation of the linear stochastic wave equation is studied. LÄS MER

  3. 3. On A Posteriori Error Estimation in the Maximum Norm

    Detta är en avhandling från Göteborg : Chalmers University of Technology

    Författare :Mats Boman; Göteborgs universitet.; Gothenburg University.; [2000]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES;

    Sammanfattning : In this thesis we consider residual-based a posteriori error estimates in the maximum norm for the finite element solution of some partial differential equations. The thesis consists of three papers. The first paper concerns a pointwise a posteriori error estimate for the time dependent obstacle problem. LÄS MER

  4. 4. On the Finite Element Method for the Time-Dependent Ginzburg-Landau Equations

    Detta är en avhandling från Göteborg : Chalmers University of Technology

    Författare :Johan Ivarsson; Göteborgs universitet.; Gothenburg University.; [2001]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; discontinuous Galerkin method; a posteriori error estimate; adaptive finite element method; duality; residual; Ginzburg-Landau equations; superconductivity;

    Sammanfattning : This thesis is primarily concerned with various issues regarding finite element approximation of the time-dependent Ginzburg-Landau equations. The time-dependent Ginzburg-Landau equations is a macroscopic, phenomenological model of superconductivity, consisting of a system of nonlinear, parabolic partial differential equations. LÄS MER

  5. 5. Computational Modeling of Complex Flows

    Detta är en avhandling från Göteborg : Chalmers University of Technology

    Författare :Johan Hoffman; Göteborgs universitet.; Gothenburg University.; [2002]
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; computational fluid dynamics; adaptive finite element method; a posteriori error estimate; subgrid modeling; transition to turbulence; multiresolution analysis; object-oriented software;

    Sammanfattning : In this thesis we consider the following aspects of computational modeling of complex flows: (i) subgrid modeling, (ii) stability, (iii) a posteriori error estimation, and (iv) computational platform. <p />We develop a framework for adaptivity and error control for multiscale problems, in particular for turbulent flow, based on a posteriori error estimates. LÄS MER