Sökning: "Sergio Benenti"

Hittade 3 avhandlingar innehållade orden Sergio Benenti.

  1. 1. Systems of Linear First Order Partial Differential Equations Admitting a Bilinear Multiplication of Solutions

    Författare :Jens Jonasson; Stefan Rauch; Sergio Benenti; Linköpings universitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; Cauchy–Riemann equations; holomorphic functions; algebra; MATHEMATICS; MATEMATIK;

    Sammanfattning : The Cauchy–Riemann equations admit a bilinear multiplication of solutions, since the product of two holomorphic functions is again holomorphic. This multiplication plays the role of a nonlinear superposition principle for solutions, allowing for construction of new solutions from already known ones, and it leads to the exceptional property of the Cauchy–Riemann equations that all solutions can locally be built from power series of a single solution z = x + iy ∈ C. LÄS MER

  2. 2. The Levi-Civita geodesic equivalence problem and multiplication of cofactor pair systems

    Författare :Jens Jonasson; Sergio Benenti; Linköpings universitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; MATHEMATICS; MATEMATIK;

    Sammanfattning : When studying equivalence of dynamical systems, in the sense of Levi-Civita, the concept of cofactor pair systems plays an important role. Co-factor pair systems can be constructed through a multiplicative structure of the so called quasi-Cauchy-Riemann equations (cof J)-1▽V = (cof )-1▽, where J and are special conformal Killing tensors. LÄS MER

  3. 3. Determination of separation coordinates for potential and quasi-potential Newton systems

    Författare :Claes Waksjö; Sergio Benenti; Linköpings universitet; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; MATHEMATICS; MATEMATIK;

    Sammanfattning : When solving Newton systems q = M(q), q ϵ Rn, by the method of separation of variables, one has to determine coordinates in which the related Hamilton-Jacobi equation separates.The problem of finding separation coordinates for potential Newton systems q = -∇V (q) goes back ta Jacobi. LÄS MER