Sökning: "Laser-based powder bed fusion"

Visar resultat 1 - 5 av 12 avhandlingar innehållade orden Laser-based powder bed fusion.

  1. 1. Powder degradation during powder bed fusion processing

    Författare :Ahmad Raza; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Laser-based powder bed fusion; Alloy 718; Powder degradation; Oxidation; Electron beam powder bed fusion; Additive manufacturing; AlSi10Mg; Residual oxygen; Spatter particles; Sublimation.;

    Sammanfattning : Powder bed fusion (PBF) techniques, including laser-based powder bed fusion (LB-PBF) and electron beam powder bed fusion (EB-PBF), are two rapidly growing additive manufacturing (AM) processes due to their ability to produce complex geometries in near-net shapes. To attain reproducibility and repeatability in PBF processes, a consistent set of powder properties is vital. LÄS MER

  2. 2. Laser-based powder bed fusion of stainless steels

    Författare :Dmitri Riabov; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; additive; 316L; maraging; oxidation; oxides; morphology; atomization; flowability; PBF-LB; mechanical properties; spreadability; precipitates; surface; powder; ODS;

    Sammanfattning : The aim of the present work has been to widen the knowledge of how variations within powder manufacturing affect laser-based powder bed fusion processing, and how this processing affects the microstructure and strength of stainless steels. The approach was to keep the processing parameters fixed while the powder feedstock was varied. LÄS MER

  3. 3. The Effects of Morphology and Surface Oxidation of Stainless Steel Powder in Laser Based-Powder Bed Fusion

    Författare :Dmitri Riabov; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; additive manufacturing; powder surface; 316L stainless steel; oxides; oxidation; laser based-powder bed fusion; morphology; powder properties; powder production;

    Sammanfattning : Laser based-powder bed fusion (LB-PBF) is one of the many techniques within additive manufacturing (AM) that allows for near net shape manufacturing of metallic components. By using powder feedstock, it is possible to spread thin layers of powder and further selectively fuse powder in a repetitive manner until the component is completed. LÄS MER

  4. 4. Laser Based Powder Bed Fusion of Plain Carbon and Low-Alloy Steels: Microstructure and Processability

    Författare :William Hearn; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Low-Alloy Steel; Additive Manufacturing; Lack of Fusion Porosity; Laser Based Powder Bed Fusion; Plain Carbon Steel; Intrinsic Heat Treatment; Keyhole Porosity; Cold Cracking;

    Sammanfattning : Despite the prominence of laser based powder bed fusion (LB-PBF) as an additive manufacturing technique, the number of alloys that have been approved for the process remains limited. In traditional manufacturing, ferrous alloys are the most common alloy group, consisting primarily of plain carbon and low-alloy steels. LÄS MER

  5. 5. Microstructural development in laser-based powder bed fusion - from ferritic stainless steel to medium entropy alloys

    Författare :Sri Bala Aditya Malladi; Chalmers tekniska högskola; []
    Nyckelord :TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; mechanical properties; interstitial solid solution strengthening; ferritic stainless steels; inoculation; Laser-based powder bed fusion; microstructural characterization; medium entropy alloys;

    Sammanfattning : Ever since the advent of additive manufacturing (AM), the interest in AM technologies has skyrocketed due to its intrinsic ability to produce near net shaped components. Laser-based powder bed fusion (LB-PBF), being one of the most widely adapted AM technologies, has been especially a game changer due to its ability to produce components of complex geometries with improved designs and to reduce not only the final weight of the products but also the amount of the waste produced. LÄS MER