Sökning: "Laser plasma"

Visar resultat 1 - 5 av 170 avhandlingar innehållade orden Laser plasma.

  1. 1. Intense laser-plasma interactions

    Författare :Joel Magnusson; Chalmers tekniska högskola; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; radiation reaction; radiation generation; particle-in-cell; plasma; pair production cascades; ion acceleration; laser;

    Sammanfattning : In the interaction of ultra-intense laser fields with matter, the target is rapidly ionized and a plasma is formed. The ability of a plasma to sustain acceleration gradients, orders of magnitude larger than achievable with conventional accelerators, has led to a great interest in laser-driven plasma-based particle and radiation sources, with applications in materials science, biology and medicine. LÄS MER

  2. 2. Approaches to particle acceleration in intense laser-matter interaction

    Författare :Joel Magnusson; Chalmers tekniska högskola; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; particle-in-cell; nonlinear dynamics; laser; plasma; laser-matter interaction; particle acceleration;

    Sammanfattning : In the interaction of ultra-intense laser fields with matter, the target is rapidly ionized and a plasma is formed. The ability of a plasma to sustain acceleration gradients, orders of magnitude larger than achievable with conventional accelerators, has led to a great interest in laser-driven plasma-based particle acceleration and radiation generation, with applications in materials science, biology and medicine. LÄS MER

  3. 3. Extreme Electron Beams and Brilliant X-rays : Generation, Manipulation and Characterization of Relativistic Electron Beams for and from Plasma-Based Accelerators

    Författare :Jonas Björklund Svensson; Atomfysik; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; laser; plasma; wakefield; acceleration; accelerator; relativistic; electrons; x-rays; ultra-fast; betatron; laser-wakefield acceleration; plasma-wakefield acceleration; Fysicumarkivet A:2020:Björklund;

    Sammanfattning : This thesis is based on work done by the author on the development of plasma-based electron accelerators driven by ultra-intense laser pulses and dense electron bunches. Plasma based accelerators have several benefits, such as accelerating fields around 1000 times stronger than in “conventional” radio-frequency accelerators, which can allow for shrinking the overall footprint of the accelerator. LÄS MER

  4. 4. Modelling of laser plasma interaction with applications

    Författare :Benjamin Svedung Wettervik; Chalmers tekniska högskola; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; electron wakefield acceleration; ion acceleration; coherent X-ray pulses; plasma; Vlasov-Maxwell equations; continuum methods; radiation generation;

    Sammanfattning : The development of laser systems with ultra-high intensities has both opened up prospects for compact particle accelerators, as well as probing QED-effects, which are present in the high intensity regime. To describe laser matter interaction, it is necessary to self-consistently account for the paths of a large number of particles and the corresponding electromagnetic fields, with the addition of stochastic effects at high laser intensities. LÄS MER

  5. 5. Target and Laser Pulse Optimization for Laser-Driven Ion Acceleration

    Författare :Alexander Permogorov; Atomfysik; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; Terawatt laser; Target normal sheath acceleration; laser-driven ion acceleration; proton acceleration; double plasma mirror; Thomson parabola spectrometer; Fysicumarkivet A:2021:Permogorov;

    Sammanfattning : The research presented in this thesis is primarily focused on experimental investigations of laser-driven ion acceleration from solid targets via the target normal sheath acceleration mechanism. In particular, ways of optimizing the absorption of the laser pulse energy by free plasma electrons in the target, or modifying the shape of the accelerating electron sheath were addressed. LÄS MER