Sökning: "Jordan algebras"

Hittade 4 avhandlingar innehållade orden Jordan algebras.

  1. 1. Kantor Triple Systems

    Författare :Daniel Mondoc; Matematik (naturvetenskapliga fakulteten); []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES; gruppteori; fältteori; algebra; algebraic geometry; group theory; Talteori; field theory; Number Theory; Composition algebras; Jordan algebras; Kantor triple systems; Lie algebras; Jordan triple systems; algebraisk geometri;

    Sammanfattning : The main purpose of this thesis is to study real exceptional Kantor triple systems. In the first paper we first prove the known results in both the real and complex classical cases of K-simple Kantor triple systems. In the real classical case our approach gives somewhat simpler formulas. LÄS MER

  2. 2. Lefschetz properties and Jordan types of Artinian algebras

    Författare :Nasrin Altafi; Mats Boij; Martina Juhnke-Kubitzke; KTH; []
    Nyckelord :NATURAL SCIENCES; NATURVETENSKAP; Lefschetz properties; Jordan type; Hilbert function; Artinian algebra; Gorenstein algebra; Hessian;

    Sammanfattning : This thesis contains six papers concerned with studying the Lefschetz properties and Jordan types of linear forms for graded Artinian algebras. Lefschetz properties and Jordan types carry information about the ranks of multiplication maps by linear forms on graded Artinian algebras. LÄS MER

  3. 3. Exceptional Lie algebras and M-theory

    Författare :Jakob Palmkvist; Chalmers University of Technology; []
    Nyckelord :NATURVETENSKAP; NATURAL SCIENCES;

    Sammanfattning : In this thesis we study algebraic structures in M-theory, in particular the exceptional Lie algebras arising in dimensional reduction of its low energy limit, eleven-dimensional supergravity. We focus on e8 and its infinite-dimensional extensions e9 and e10. LÄS MER

  4. 4. Extreme points of the Vandermonde determinant in numerical approximation, random matrix theory and financial mathematics

    Författare :Asaph Keikara Muhumuza; Sergei Silvestrov; Anatoliy Malyarenko; Karl Lundengård; Milica Rancic; Olga Liivapuu; Mälardalens högskola; []
    Nyckelord :NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURVETENSKAP; NATURAL SCIENCES; Mathematics Applied Mathematics; matematik tillämpad matematik;

    Sammanfattning : This thesis discusses the extreme points of the Vandermonde determinant on various surfaces, their applications in numerical approximation, random matrix theory and financial mathematics. Some mathematical models that employ these extreme points such as curve fitting, data smoothing, experimental design, electrostatics, risk control in finance and method for finding the extreme points on certain surfaces are demonstrated. LÄS MER