Initialization Methods for System Identification

Detta är en avhandling från Linköping : Linköping University Electronic Press

Sammanfattning: In the system identification community a popular framework for the problem of estimating a parametrized model structure given a sequence of input and output pairs is given by the prediction-error method. This method tries to find the parameters which maximize the prediction capability of the corresponding model via the minimization of some chosen cost function that depends on the prediction error. This optimization problem is often quite complex with several local minima and is commonly solved using a local search algorithm. Thus, it is important to find a good initial estimate for the local search algorithm. This is the main topic of this thesis.The first problem considered is the regressor selection problem for estimating the order of dynamical systems. The general problem formulation is difficult to solve and the worst case complexity equals the complexity of the exhaustive search of all possible combinations of regressors. To circumvent this complexity, we propose a relaxation of the general formulation as an extension of the nonnegative garrote regularization method. The proposed method provides means to order the regressors via their time lag and a novel algorithmic approach for the \textsc{arx} and \textsc{lpv-arx} case is given. Thereafter, the initialization of linear time-invariant polynomial models is considered. Usually, this problem is solved via some multi-step instrumental variables method. For the estimation of state-space models, which are closely related to the polynomial models via canonical forms, the state of the art estimation method is given by the subspace identification method. It turns out that this method can be easily extended to handle the estimation of polynomial models. The modifications are minor and only involve some intermediate calculations where already available tools can be used. Furthermore, with the proposed method other a priori information about the structure can be readily handled, including a certain class of linear gray-box structures. The proposed extension is not restricted to the discrete-time case and can be used to estimate continuous-time models. The final topic in this thesis is the initialization of discrete-time systems containing polynomial nonlinearities. In the continuous-time case, the tools of differential algebra, especially Ritt's algorithm, have been used to prove that such a model structure is globally identifiable if and only if it can be written as a linear regression model. In particular, this implies that once Ritt's algorithm has been used to rewrite the nonlinear model structure into a linear regression model, the parameter estimation problem becomes trivial. Motivated by the above and the fact that most system identification problems involve sampled data, a version of Ritt's algorithm for the discrete-time case is provided. This algorithm is closely related to the continuous-time version and enables the handling of noise signals without differentiations.