Effects of fractionated irradiation on salivary glands

Detta är en avhandling från Umeå : Umeå universitet

Sammanfattning: The thesis is a study of the effects of radiation on the salivary glands in an experimental and a clinical study. Irradiation is a cornerstone in the management of head and neck cancer and is as other modalities of cancer treatment, afflicted with adverse reactions. An optimal radiotherapy regime is limited by the sensitivity of the normal tissues with regard to early and late effects. In certain cases the early effects can be so troublesome that it will cause interruption in the irradiation and questioning of the curative intention. Although DNA is the lethal target, other parts of the cell have been proposed as sensitive targets to irradiation. Different in vitro secretory models and quantitative morphological characterization and immunohistochemical evaluation of neuropeptides were performed in rat salivary glands after irradiation. The irradiation was given unilaterally or bilaterally once a day for a five-day schedule with 6 MV photons (total dose 20, 30, 35, 40, 45 Gy) or a two fractions regime in five days with a total dose of 24 or 32 Gy. The contralateral gland served as a control for unilaterally treated animals and parallel analyses were done 10 days or 180 days following the last irradiation dose. An early, dose-dependent effect of fractionated irradiation on noradrenaline-stimulated potassium fluxes (86Rb+ fluxes) was demonstrated. In contrast, the exocytotic amylase release displayed no obvious alterations, and morphologically no changes were seen. Regarding late effects (180 days) the noradrenaline-stimulated electrolyte secretion was decreased at least for the higher doses of irradiation. Amylase content and loss of acini was also dose-dependently decreased. At 10 days after bilateral irradiation there was a marked increase in the expression of the neuropeptides substance P, leu-enkephalin and bombesin in the ganglionic cells associated with the submandibular glands and in nerve fibers of the glandular parenchyme.In addition, a clinical prospective evaluation of 25 patients was performed before, during radiotherapy and 6, 12 and 18 months after the end of treatment. A great interindividual variation in the recovery was demonstrated with regard to salivary flow rate. Irradiation doses about 40-50 Gy caused generally reversible changes; sometimes salivary secretion was almost completely restored 6-18 months after the end of radiotherapy. Doses exceeding 65 Gy induced almost irreversible alterations.Even if DNA is the target for the lethal effect of irradiation, other constituents, such as the cell membrane or neuropeptide expression can be significantly affected by irradiation and cause important physiological changes.