Human extraocular muscles : molecular diversity of a unique muscle allotype

Sammanfattning: Introduction: The extraocular muscles (EOMs) are considered a separate class of skeletal muscle, allotype. Myosin is the major contractile protein in muscle. The myosin heavy chain (MyHC) isoforms are the best molecular markers of functional heterogeneity of muscle fibers. The relaxation rate, reflects the rate at which Ca2+ is transported back into the sarcoplasmic reticulum (SR) mostly by SR Ca2+ATPase (SERCA). Myosin binding protein C (MyBP-C), plays a physiological role in regulating contraction. The laminins (Ln) are the major non-collagenous components of the basement membrane (BM) surrounding muscle fibers and are important for muscle fiber integrity. Methods: Adult human EOMs were studied with SDS-PAGE, immunoblots and immunocytochemistry, the latter with antibodies against six MyHC, 2 SERCA, 2 MyBP-C and 8 laminin chain isoforms. The capillary density was also determined. Results: Most fibers contained a mixture of MyHC isoforms. Three major groups of fibers could be distinguished. Fast fibers that stained with anti-MyHCIIa, slow fibers that stained with anti-MyHCI and MyHCeompos/MyHCIIaneg-fibers that stained with neither of these antibodies but with anti-MyHCI+IIa+eom and anti-MyHCeom. A majority of the fibers contained both SERCA1 and 2 whereas 1% were unstained with both antibodies. Biochemically SERCA2 was more abundant than SERCA1. MyBP-Cfast was not present in the EOMs and MyBP-Cslow was only detected immunocytochemically. The extrasynaptical BM of the EOM muscle fibers contained Lna2, b1, b2, g1, a4 and a5 chains. The capillary density in the EOMs was very high (1050 +/-190 capillaries/mm2) and significantly (p<0.05) higher in the orbital than in the global layer. Conclusions: The co-existence of complex mixtures of several crucial protein isoforms provide the human EOMs with a unique molecular portfolio that a) allows a highly specific fine-tuning regime of contraction and relaxation, and b) imparts structural properties that are likely to contribute to protection against certain neuromuscular diseases.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)