Radical aspects on arthritis : the role of neutrophil generation of nitric oxide and superoxide in inflammatory conditions

Sammanfattning: The polymorphonuclear neutrophil granulocytes (neutrophils) are gaining renewed interest regarding their involvement in chronic inflammatory disorders, including rheumatoid arthritis (RA). Besides phagocytic and destructive capabilities, neutrophils have regulatory roles, e.g. by influencing responses from dendritic cells and lymphocytes. Several animal models have revealed that neutrophils are crucial for the initiation and maintenance of chronic inflammatory diseases. Neutrophil function is highly dependent on their ability to produce superoxide, an oxygen radical which can be further metabolized to other free radicals. Whether or not neutrophils are capable of producing the oxygen radical nitric oxide (NO˙) has been a matter of debate.In this thesis it was shown that freshly isolated neutrophils from the joint cavity of patients with RA, but not from other arthritis patients, had ongoing intracellular production of superoxide, indicating the processing of ingested material.The finding that joint neutrophils, but seemingly not circulating cells, expressed the NO-inducing enzyme iNOS, led to a series of experiments aimed to elucidate where in the exudative process this enzyme could first be detected. We could finally, for the first time, present evidence that human neutrophils actually express iNOS constitutively. Our data also suggest that neutrophil iNOS may be membrane associated, thus differing from the cytosolic location in other cell types. Since NOS activity was not demonstrated in isolated cells, the notion that neutrophil iNOS is regulated primarily at the transcriptional level must be questioned. NO production from iNOS requires the presence of its substrate, L-arginine. To test the hypothesis that neutrophil arginase prevents neutrophil NO-production, we investigated whether arginase inhibition affects neutrophil NO-dependent oxidative function. Initial data revealed a difference in the effect of arginase inhibition comparing neutrophil stimulus with a soluble formylated tri-peptide (fMLF) and integrin-mediated stimulation with particle-bound collagen type-1. This led to the hypothesis that integrin-ligation on neutrophils induces extracellular liberation of arginase, which was confirmed both by measuring arginase and its enzyme activity. The findings in this thesis may be important not only regarding the role of neutrophils in chronic joint inflammation, but also as a link in the accelerated atherosclerosis observed in chronic inflammatory disorders, e.g. RA.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)